I ILLINOIS

Lecture /: Irigonometric
Interpolation

Today:

* Approximating with trigonometric functions rather than
polynomials



Where are we?

Recap: Thus far, we have dealt with approximating a function f(x) using interpolation with
polynomials, either globally (monomial & Lagrange bases), or locally (cubic splines)

fa(xj) :f(x,)

This time:

(A) We will continue to use interpolation to approximate f(x)

(B) Now, we will consider interpolation onto a subspace defined by trigonometric functions
(i.e., sines and cosines)

(C) This is a usetul approach when you known your function is periodic

(D) We will only consider global interpolation in this trigonometric setting



A suitable basis for trigonometric interpolation

Our approach will be similar to that of polynomial interpolation.

We first pICI( 3 subspace: gn[a’ b] The vector space defined by functions that

\_/ have between 1 to n integer periods on [a, b]

We then need a basis for this subspace:
It turns out that one basis is
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Intuition for why 9, is a basis:

e Clearly the cosine/sine pair for each j has j integer periods over the interval

* The sines let us represent functions with zero values at the ends, and the
cosines for functions with nonzero end values



We will use a different
but strongly related basis

Another basis for "[a, b] turns out to be

B, =41, 2mi(x — a) , 27rl(x— 4m(x a) ’ 47rl(x a 27rm(x a) ’ m>
(b - a) (b-a (b - a) (b-a (b - a) y/

Some important questions.

* Note: exp(ikx) = cos(kx) + i sin(kx) = the basis functions are complex-valued!
S~ How do we handle that?

e Can we relate B, to %,?

e Why would we use 9,7



Worked example: working with %,

Worked example. Let's say that when representing a function f(x) with A,, the terms
associated with j = 1 (the functions with one integer period) are

< 2ri(x — a) N _ 2zi(x —a)
P\ b-a > C‘lexp< b —a) >

What can we say about the coefticients ¢;,c_;?

[ (271’()6—61)) o <2ﬂ(x—a)>] [ < 27t(x—a)) o < 27z(x—a)>]
¢, |cos + isin +c_y |cos| - +isin| —
(b—a) (b—a) (b—a) (b—a)
= ¢ lcos <27r(x—a)> +isin<2ﬂ(x_a)>] +c_, lcos <27r(x—a)) —isin<2ﬂ(x_a)>]
(b—a) (b—a) (b—a) (b—a)

2n(x — 2n(x —
— (c1+c_1)cos< ?b(x_a;l)> +i(c1—c_1)sin< s a)> (1)

Assuming f(x) is real, then when (1) gets evaluated the result must be real valued!

= ¢,,c_; must be complex. (i.e., ¢; = cf +ic} and c_; = &, +ic’))

Activity: Show that for (1) to be real, ¢;, c_; must satisfy ¢, = ¢_;

)

c; must be the complex conjugate of c_;



Worked example: working with %, (cont).

Activity: Show that for (1) to be real, ¢;, c_; must satisty ¢, = ¢_;

. . 2n(x — a) : . . . [ 2x(x—a
= (cf+zc1’+cfl+zc£1)cos< > +l(cf+lcll—cfl—lc£1)sm< = a)

b-a b—a)
2m(x — 2 27(x —
— (cf+c§1>cos( 0 a)>+i(cf+c£ a ) Ci(e ) z _(Cl,_dl)sm< . a)>
b= b-a b—a b—a
¢ = —cl cff =X,

— Cl — C—]

When ¢y, c_; satisfy this property, (1) simplifies to the real-valued function

2¢1 cos < 2?]9()6__61;1) ) —2¢] sin < 2?()6 —a) > (2)




Worked example: relating 9%, to A,

Worked example. Let's say that when representing a function f(x) with 9B, the terms
associated with j = 1 (the functions with one integer period) are

a, COS <2ﬂ(x _ a)) + b, sin <27r(x— a)>
(b—a) (b—a)

Using your answer from the last worked example, relate ¢, to ay, b;.

Remember equation (2) from the last worked example:

N 2n(x — a) g 2n(x — a)
—> 2c; cos < b—a > 2c, sm( b—a > (2)

_9.R p _ I
So if we believe that we can use %, as a basis, we can use 9%,

And we have some intuition for dealing with these scary-seeming coefficients



Summary: how to use %, as a basis for 7 "[a, b]

So if we believe that we can use 9B, as a basis, we can use %,

And we have some intuition for dealing with these scary-seeming coefficients

Key takeaway. When approximating a function f(x) using J"[a, b], we can write the
approximation as a linear combination of the basis functions in 9,:

4 2mik(x —
9= 2, cexr < ﬂ(lb(fma))

k=—n

where ¢, = ¢_; forj = 1,...,n (provided f(x) is a real-valued function).



Recap: return to the questions highlighted in slide 4

Some important questions.

e Note: exp(ikx) = cos(kx) + i sin(kx) = the basis functions are complex-valued!
N~ How do we handle that?

r¥ Make sure cj = C_.

J

e Can we relate B, to %,?

Yes! The coefficients associated with the index j basis functions
_ 2R — _ .l
are related by a; = 2¢;°, b; = — 2c;

e Why would we use 9,7
&— We will discuss this next

K— We will first talk about solving for the ¢; using interpolation

A\—Then discuss the benefit of %,: lets us solve for the

coefficients FAST with the "Fast Fourier Transform”



Solving tor the coetticients tor %,

We will use function interpolation. Using our subspace, J"[a, b], and our basis for that

subspace %2. N /’ Necessary because we have unknown coeffsc_,, ..., ¢y, ..., C,

Label interpolation points as x, ..., Xy,

(A) Break domain [a, b] up into@interpolation points
(B) Require: approximate function equals the true function at the interpolation points

To make notation easier, write as k¢;

f‘a(x]) =fx' ]_ 9”-,2” - 5_27zi(xj—a)
] DA (b—a)
=f(xj), j=0,....,2n
| ep(-ng) o exp0) o expdy) | el | Ao t Ja(x) = f(x)
exp(—nfl) CXP(Ofl) eXp(nél) f(xz) . :
— : : : : C | = : (3)

exp(—néy,—1) - exp(0&y,_1) -+ exp(néy,_y) 5 S(,—1)
| exp(-n&,) - exp(0&,) - exp(ngyy) | LD | o)

. . . >

(C) Solve linear system for the coefficients c_,, ..., c, X

(D) We now have our interpolant, f,(x)!

Notes.
* Use uniformly spaced interpolation points, and exclude right boundary point.

e Don't actually construct and solve (3)

( Use the Fast Fourier Transform. Instead of getting coefficients in O(n?) operations, does it in
O(n log(n)) operations. HUGE savings when n is large. 10



How to perform trigonometric interpolation on a computer

Recap. So how do we compute the approximation f (x) associated with the I "[a, b]
subspace?

(A) For an f(x) sampled at 2n + 1 evenly spaced interpolation points & assembled
into a vector ...

(B) Extract the coefficients via

1
<=1/

(C) We now have f (x) via

& 2rik(x — a)
o) = Z EP ( (b —a) >

k=—n

11



