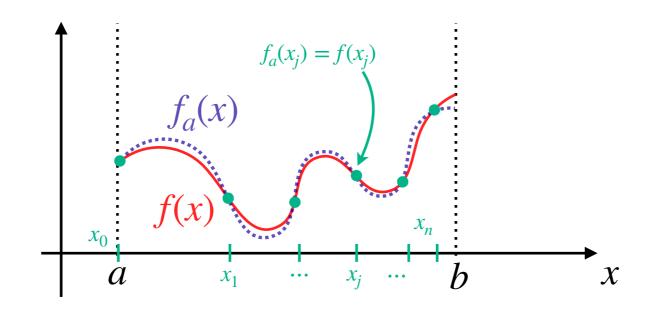
Lecture 7: Trigonometric Interpolation

Today:

• Approximating with **trigonometric functions** rather than polynomials

Where are we?

Recap: Thus far, we have dealt with approximating a function f(x) using interpolation with polynomials, either globally (monomial & Lagrange bases), or locally (cubic splines)



This time:

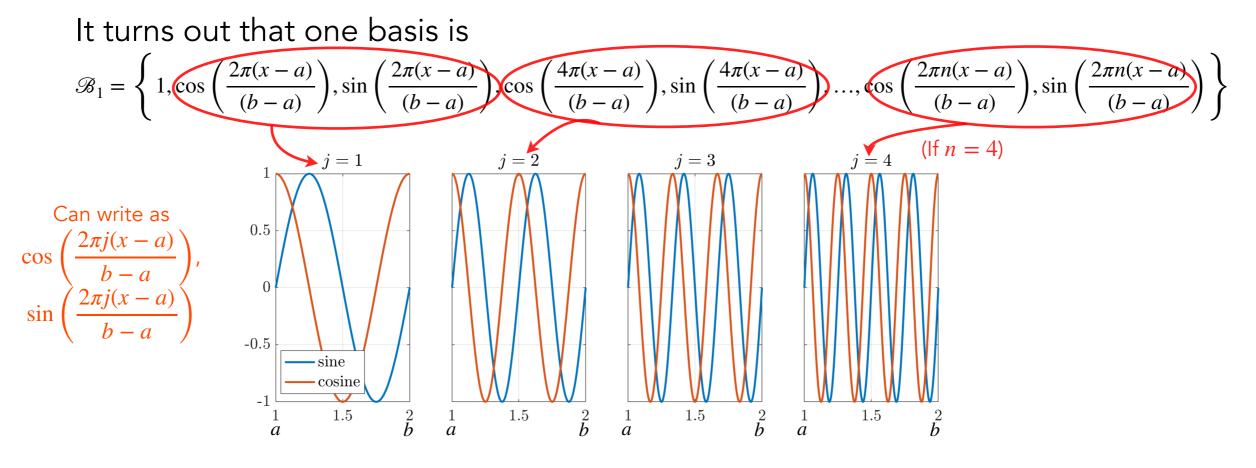
- (A) We will continue to use interpolation to approximate f(x)
- (B) Now, we will consider interpolation onto a subspace defined by *trigonometric functions* (i.e., sines and cosines)
- (C) This is a useful approach when you known your function is periodic
- (D) We will only consider global interpolation in this trigonometric setting

A suitable basis for trigonometric interpolation

Our approach will be similar to that of polynomial interpolation.

We first pick a subspace: $\mathcal{T}^{n}[a, b]$ The vector space defined by functions that have between 1 to *n* integer periods on [a, b]

We then need a **basis** for this subspace:



Intuition for why \mathscr{B}_1 is a basis:

- Clearly the cosine/sine pair for each j has j integer periods over the interval
- The sines let us represent functions with zero values at the ends, and the cosines for functions with nonzero end values

We will use a different but strongly related basis

Another basis for $\mathcal{T}^n[a,b]$ turns out to be

$$\mathscr{B}_{2} = \left\{ 1, \exp\left(\frac{2\pi i(x-a)}{(b-a)}\right), \exp\left(-\frac{2\pi i(x-a)}{(b-a)}\right), \exp\left(\frac{4\pi i(x-a)}{(b-a)}\right), \exp\left(-\frac{4\pi i(x-a)}{(b-a)}\right), \exp\left(\frac{2\pi in(x-a)}{(b-a)}\right), \exp\left(-\frac{2\pi in(x-a)}{(b-a)}\right) \right\}$$

Some important questions.

- Note: $\exp(ikx) = \cos(kx) + i\sin(kx) \Longrightarrow$ the basis functions are complex-valued! How do we handle that?
- Can we relate \mathscr{B}_1 to \mathscr{B}_2 ?
- Why would we use \mathscr{B}_2 ?

Worked example: working with \mathscr{B}_2

Worked example. Let's say that when representing a function f(x) with \mathscr{B}_2 , the terms associated with j = 1 (the functions with one integer period) are

$$c_1 \exp\left(\frac{2\pi i(x-a)}{(b-a)}\right) + c_{-1} \exp\left(-\frac{2\pi i(x-a)}{(b-a)}\right)$$

What can we say about the coefficients c_1, c_{-1} ?

$$c_{1}\left[\cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i\sin\left(\frac{2\pi(x-a)}{(b-a)}\right)\right] + c_{-1}\left[\cos\left(-\frac{2\pi(x-a)}{(b-a)}\right) + i\sin\left(-\frac{2\pi(x-a)}{(b-a)}\right)\right]$$
$$\implies c_{1}\left[\cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i\sin\left(\frac{2\pi(x-a)}{(b-a)}\right)\right] + c_{-1}\left[\cos\left(\frac{2\pi(x-a)}{(b-a)}\right) - i\sin\left(\frac{2\pi(x-a)}{(b-a)}\right)\right]$$
$$\implies (c_{1} + c_{-1})\cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i(c_{1} - c_{-1})\sin\left(\frac{2\pi(x-a)}{(b-a)}\right) \quad (1)$$

Assuming f(x) is real, then when (1) gets evaluated the result must be real valued!

 $\implies c_1, c_{-1}$ must be complex. (i.e., $c_1 = c_1^R + ic_1^I$ and $c_{-1} = c_{-1}^R + ic_{-1}^I$)

Activity: Show that for (1) to be real, c_1, c_{-1} must satisfy $c_1 = \overline{c_{-1}}$

 c_1 must be the complex conjugate of c_{-1}

Worked example: working with \mathscr{B}_2 (cont).

Activity: Show that for (1) to be real, c_1, c_{-1} must satisfy $c_1 = \overline{c_{-1}}$

 $\Rightarrow (c_1^R + ic_1^I + c_{-1}^R + ic_{-1}^I) \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i(c_1^R + ic_1^I - c_{-1}^R - ic_{-1}^I) \sin\left(\frac{2\pi(x-a)}{(b-a)}\right)$ $\Rightarrow (c_1^R + c_{-1}^R) \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i(c_1^I + c_{-1}^I) \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + i(c_1^R - c_{-1}^R) \sin\left(\frac{2\pi(x-a)}{(b-a)}\right) - (c_1^I - c_{-1}^I) \sin\left(\frac{2\pi(x-a)}{(b-a)}\right)$ $c_1^I = -c_{-1}^I \qquad c_1^R = c_{-1}^R$

 $\implies c_1 = \overline{c_{-1}}$

When c_1, c_{-1} satisfy this property, (1) simplifies to the real-valued function $2c_1^R \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) - 2c_1^I \sin\left(\frac{2\pi(x-a)}{(b-a)}\right)$ (2)

Worked example: relating
$$\mathscr{B}_1$$
 to \mathscr{B}_2

Worked example. Let's say that when representing a function f(x) with \mathscr{B}_1 , the terms associated with j = 1 (the functions with one integer period) are

$$a_1 \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) + b_1 \sin\left(\frac{2\pi(x-a)}{(b-a)}\right)$$

Using your answer from the last worked example, relate c_1 to a_1 , b_1 .

Remember equation (2) from the last worked example:

$$\implies 2c_1^R \cos\left(\frac{2\pi(x-a)}{(b-a)}\right) - 2c_1^I \sin\left(\frac{2\pi(x-a)}{(b-a)}\right) \quad (2)$$

 $\implies a_1 = 2c_1^R, \ b_1 = -2c_1^I$

So if we believe that we can use \mathscr{B}_1 as a basis, we can use \mathscr{B}_2

And we have some intuition for dealing with these scary-seeming coefficients

Summary: how to use \mathscr{B}_2 as a basis for $\mathscr{T}^n[a,b]$

So if we believe that we can use \mathscr{B}_1 as a basis, we can use \mathscr{B}_2

And we have some intuition for dealing with these scary-seeming coefficients

Key takeaway. When approximating a function f(x) using $\mathcal{T}^n[a,b]$, we can write the approximation as a linear combination of the basis functions in \mathcal{B}_2 :

$$f_a(x) = \sum_{k=-n}^n c_k \exp\left(\frac{2\pi i k(x-a)}{(b-a)}\right)$$

where $c_k = \overline{c_{-k}}$ for j = 1, ..., n (provided f(x) is a real-valued function).

Recap: return to the questions highlighted in slide 4

Some important questions.

• Note: $\exp(ikx) = \cos(kx) + i\sin(kx) \implies$ the basis functions are complex-valued!

- How do we handle that?

— Make sure $c_i = \overline{c_{-i}}$

• Can we relate \mathscr{B}_1 to \mathscr{B}_2 ?

Yes! The coefficients associated with the index j basis functions are related by $a_j = 2c_j^R$, $b_j = -2c_j^I$

• Why would we use \mathscr{B}_2 ?

 $\mathcal L$ We will discuss this next

We will first talk about solving for the c_j using interpolation
Then discuss the benefit of B₂: lets us solve for the coefficients FAST with the "Fast Fourier Transform"

Solving for the coefficients for \mathscr{B}_2

We will use **function interpolation**. Using our subspace, $\mathcal{T}^n[a, b]$, and our basis for that subspace $\mathcal{B}_2...$ Necessary because we have unknown coeffs $c_{-n}, ..., c_0, ..., c_n$ Label interpolation points as $x_0, ..., x_{2n}$

- (A) Break domain [a, b] up into (2n + 1) interpolation points
- (B) Require: approximate function equals the true function at the interpolation points

 $f_{a}(x_{j}) = f(x_{j}), \quad j = 0, \dots, 2n$ To make notation easier, write as $k\xi_{j}$ $\implies \sum_{k=-n}^{n} c_{k} \exp\left(\frac{2\pi i k(x_{j}-a)}{(b-a)}\right) = f(x_{j}), \quad j = 0, \dots, 2n$ $\implies \left[\exp(-n\xi_{0}) \quad \cdots \quad \exp(0\xi_{0}) \quad \cdots \quad \exp(n\xi_{0}) \\ \exp(-n\xi_{1}) \quad \cdots \quad \exp(0\xi_{1}) \quad \cdots \quad \exp(n\xi_{1}) \\ \vdots \quad \vdots \quad \cdots \quad \vdots \quad \vdots \\ \exp(-n\xi_{2n-1}) \quad \cdots \quad \exp(0\xi_{2n-1}) \quad \cdots \quad \exp(n\xi_{2n-1}) \\ \exp(-n\xi_{2n}) \quad \cdots \quad \exp(0\xi_{2n}) \quad \cdots \quad \exp(n\xi_{2n}) \end{bmatrix} \left[\begin{bmatrix} c_{-n} \\ \vdots \\ c_{0} \\ \vdots \\ c_{n} \end{bmatrix} = \begin{bmatrix} f(x_{0}) \\ f(x_{2}) \\ \vdots \\ f(x_{2n-1}) \\ f(x_{2n}) \end{bmatrix} \right] (3)$ (3)

(C) Solve linear system for the coefficients $c_{-n}, ..., c_n$ (D) We now have our interpolant, $f_a(x)$!

Notes.

- Use uniformly spaced interpolation points, and exclude right boundary point.
- Don't actually construct and solve (3)

Use the Fast Fourier Transform. Instead of getting coefficients in $O(n^2)$ operations, does it in $O(n \log(n))$ operations. **HUGE** savings when *n* is large.

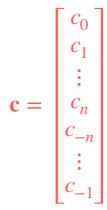
How to perform trigonometric interpolation on a computer

Recap. So how do we compute the approximation $f_a(x)$ associated with the $\mathcal{T}^n[a, b]$ subspace?

- (A) For an f(x) sampled at 2n + 1 evenly spaced interpolation points & assembled into a vector **f**...
- (B) Extract the coefficients via

$$\mathbf{c} = \frac{1}{2n+1} fft(\mathbf{f})$$

Note: Python returns the coefficients in the order



(C) We now have $f_a(x)$ via

$$f_a(x) = \sum_{k=-n}^n c_k \exp\left(\frac{2\pi i k(x-a)}{(b-a)}\right)$$