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Error

Today: 

• Quantify error in function approximation 
• More key concepts — inner product, norm
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Reminder from last week: 
Where are we with approximating functions?
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Goal: find a function, , that approximates a given function,  , accurately on fa(x) f(x) x ∈ [a, b]
 belonging to the interval x [a, b]

What are the key challenges to this approach?

• There are infinitely many possible functions! Can’t handle on a computer

• What does accurately mean?

How do we address these challenges?

Restrict the set of possible functions we are considering 
Introduce key concepts of a vector space & subspace

Introduce key concept of norm to quantify the size of the error

xa b

f(x)

fa(x)

Last lecture

Today!



Stating where we are  
so far in words
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Last time: We used the concepts of vector space and subspace to create a framework 
for posing the ambiguous aim “I want to be able to approximate any given function” 
into the concrete, finite-dimensional goal “I want to solve for a finite number of 
coefficients”

Today: We will use the concept of a norm to create a framework for characterizing how 
accurate our approximation is.

The norm will be defined in terms of an inner product, so we’ll start there.
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Inner products



Inner product
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Definition: A function  defined on a vector space  is called an inner product if 
(1)  returns a scalar number for any  
(2)  for any  
(3)  for any  and any  
(4)  for any , with equality if and only if 

( ⋅ , ⋅ ) 𝒱
(u, v) u, v ∈ 𝒱
(u, v) = (v, u) u, v ∈ 𝒱
(αu + βv, w) = α(u, w) + β(v, w) u, v, w ∈ 𝒱 α, β ∈ ℂ
(u, u) ≥ 0 u ∈ 𝒱 u = 0

Complex conjugate

The set of  
complex numbers

This is a lot to take in at first blush, and is best learned through examples. So let’s 
consider several different cases…



Inner product: example on ℝ2
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Consider the vector space 𝒱 = ℝ2
The set of all 2x1 real-valued vectors 

Example: [2
1], [−13

212] ∈ ℝ2

A permissible (and very common) inner product on this space is the function  
defined by 

                             for any                              (1)

( ⋅ , ⋅ )

(u, v) = uTv u, v ∈ ℝ2

Activity:  
(A) Show that the proposed function (1) satisfies the properties of an inner product for 

vectors  and your choice of  

(B) Give some physical intuition for what the inner product means

u = [1
1], v = [−1

1 ], w = [2
2] α, β

uTv = u1v1 + u2v2



Inner product: example on  (continued)ℝ2
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(A) We can work through each property one at a time: 

(1)  is a scalar number 

(2)  

(3) Choosing  we have that  

But we also have that 

 

(4)  

(B) The inner product is a measure of orthogonality between two vectors. The inner 
product  was zero for our choice of  and  above because they are perpendicular 
to one another.

uTv = [1 1] [−1
1 ] = 0

(v, u) = vTu = [−1 1] [1
1] = 0 = (u, v) = (u, v)

α = 2, β =
1
2

, (αu + βv, w) = [ 3
2

5
2 ] [2

2] = 8

α(u, w) + β(v, w) = 2 ([1 1] [2
2]) +

1
2 ([−1 1] [2

2]) = 8 + 0 = 8

(u, u) = [1 1] [1
1] = 2 > 0

(u, v) u v

e1

e2
uv



Inner product: example on 𝒞[a, b]
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Consider the vector space 𝒱 = C[a, b]

Consider the candidate inner product defined by 

                             for any                              (2)(u, v) = ∫
b

a
u(x)v(x)dx u, v ∈ 𝒱

Activity:  
(A) Argue for whether the function from (2) is an inner product or not  
(B) If it is an inner product, use example 1 as an analogy to give some physical intuition 

for what the inner product means in this function setting



Inner product: example on  (continued)𝒞[a, b]
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(A) We can work through each property one at a time: 
(1) For any two continuous functions, taking the proposed integral will give a scalar 

real number 

(2) For any  

(3) 

 

(4) For any note that  

Moreover, the answer is only zero if  

(B) By analogy with example 1, the inner product gives us a generalized measure of 
orthogonality in this function setting. This ability to connect functions and vectors is 
powerful and beautiful!

u, v ∈ 𝒱, ∫
b

a
u(x)v(x)dx = ∫

b

a
v(x)u(x)dx = (v, u) = (v, u)

(αu + βv, w) = ∫
b

a
(αu(x) + βv(x))w(x)dx = α∫

b

a
u(x)w(x)dx + β∫

b

a
v(x)w(x)dx = α(u, w) + β(v, w)

u ∈ 𝒱, ∫
b

a
u(x)u(x)dx = ∫

b

a
u(x)2dx ≥ 0

u(x) = 0



Inner product: another example on 𝒞[a, b]
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Consider the vector space 𝒱 = C[a, b]

Consider the candidate inner product defined by 
                             for any                              (3)(u, v) = u(x)v(x) u, v ∈ 𝒱

Group activity:  
(A) Is the proposed function in equation (3) an inner product?
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(A) No, it is not an inner product because it does not obey the first property: 

For any  is a function of , not a scalar numberu, v ∈ 𝒱, (u, v) = u(x)v(x) x

Inner product: another example on  (continued)𝒞[a, b]
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Norm



Using the inner product to obtain a norm
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We have built intuition about inner products, but our original aim was to be able to 
measure the size of the error in our approximation. That is, how big is ?f − fa

The norm gives us this answer, and we define the norm from the inner product:

Definition: A norm is a function  defined on a vector space  in terms of 
an inner product, as 

 for any 

| | ⋅ | | 𝒱

| |u | | = (u, u) u ∈ 𝒱

Some notes: 
• By property (4) of an inner product, the norm is non-negative, as desired (can’t 

have a negative size!) 
• Using different inner products to induce the norm can help emphasize different 

things (e.g., in compressible flow, there are debates about whether to induce a 
norm from mechanical energy or entropy)

We can now assess our approximation error, , via e = f − fa | |e | | = (e, e)



Measuring error with a norm
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Consider the inner product defined by 

                             for any                              (2)(u, v) = ∫
b

a
u(x)v(x)dx u, v ∈ 𝒱

Define our approximation error as e = f − fa

Recall that a norm on  is defined ase | |e | | = (e, e)

Activity:  
Provide some intuition for why  is a useful measurement for how accurate 
our function approximation is.

| |e | | = (e, e)


