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Lecture 22: FEM for IBVPs

Today:

• Finite element methods applied to initial boundary value 
problems (IBVPs)
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Where are we up to now?
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Last week. 
(A)We developed finite difference methods methods for solving initial boundary value 

problems. Our approach first spatially discretized the IBVP which resulted in an IVP. We 
then solved the IVP using previously discussed time stepping methods.

This week. FEM for IBVPs
• We still use the method of lines to spatially discretize our PDE and solve the resulting IVP 

with a time stepping method
• This time we will spatially discretize using a local spectral method rather than local 

polynomial interpolation
• We can then solve the resulting IVP using previously discussed time stepping methods



Our canonical IBVP
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We will again consider the 1D heat equation for our derivations

We will assume zero Dirichlet boundary conditions

Week 13
Finite difference methods for

initial boundary value problems (IBVPs)

Over the last several weeks, we have numerically solved initial value
problems and boundary value problems. The subject of the next
several lectures will be to combine our tools for IVPs with our tools
for solving BVPs. That is, we will develop finite difference methods
for initial boundary value problems (IBVPs). This class of differential
equations depends on both space and time. To enable us to use our
previously developed tools, our approach will be to first discretize
the equations in space to arrive at an IVP. Doing this allows us to
then directly apply our techniques for solving IVPs. We will focus
on developing our method for the heat equation—one of the most
important canonical IBVPs.

But these same techniques can be
extended beyond the heat equation and
into a broad range of IBVPs!This week, we will focus on developing a finite difference method

for the heat equation. That is, we will solve the heat equation using
local interpolation. Next week, we will switch gears and consider
solving the heat equation using a finite element method. That is, we
will consider applying local spectral methods to the solve the heat
equation.

1 The heat equation

The heat equation may be written for a generic n-dimensional prob-
lem as

∂u

∂t
= kr2

u + g(x, t), 0 < t  T, x 2 W (1)

where r2 is the Laplace operator in n spatial dimensions and g is

For clarity, we explicitly state that we
are solving the heat equation over the
time window 0 < t  T and within the
domain W. Note that as this is an initial
boundary value problem, we require
both an initial condition and appropriate
set of boundary conditions to advance
the solution in time.

a prescribed source term. We will restrict our attention to n = 1 for
now, so that the heat equation reduces to

∂u

∂t
= k

∂2
u

∂x2 + g(x, t), 0  t  T, a  x  b (2)

Note that we are defining W = [a, b] for this 1D case.
The initial condition for this problem is relatively straightforward:

we apply a constraint on what the solution u is at time t = 0. There
is more flexibility in the boundary conditions we consider. Let us
assume that we have Dirichlet boundary conditions (that is, we
prescribe temperature at the endpoints). Thus, our constraints for the
problem are

As with the Poisson problem, there are
a variety of boundary conditions we
could consider here, including mixing
a Neumann condition (prescribing
the heat flux) at one end and the
temperature at the other end.

u(x, t = 0) = h(x)

u(x = a, t) = ga(t)

u(x = b, t) = gb(t)

(3)

where  is the heat diffusivity and  is a prescribed forcing.κ g(x, t)

Prescribed initial condition;  is givenη(x)

(1)

u(x, t = 0) = η(x)

u(x = a, t) = ga(t) = 0

u(x = b, t) = gb(t) = 0
Prescribed boundary condition



Previously: spatial discretization with local 
polynomial interpolation
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With finite difference methods, we approximated the solution  with local polynomial 
interpolation:

u(x, t)
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simplify considerably. In particular, at any instance in time we have

u(xj, t) ⇡
j+p/2

Â
i=j�p/2

bi(t)L
(j)
i
(xj)

= bj(t)

(6)

and therefore that bj(t) is an approximation of u(xj, t). Thus, for

This simplification follows from the
beautiful property of the Lagrange
polynomials that

L
(j)
i
(xj) =

(
0 i 6= j

1 i = j
(7)

finite difference methods we may write that

u(x, t) ⇡
j+p/2

Â
i=j�p/2

ui(t)L
(j)
i
(x) (8)

where ui(t) ⇡ u(xi, t). Thus, computing the various coefficients bi(t)

is equivalent to calculating the values ui(t) that approximate that
exact solution u at the grid point xi at some instance in time.

2.2 The initial value problem

We have replaced the continuous spatial variable x by the n + 1 points
{x1, . . . , xn+1}, and have restricted the spatial dependence of the
function u to be a linear combination of the Lagrange polynomials.
We will now show that the result of this spatial discretization is to
create an initial value problem.

Plugging our approximation for u(x, t) (8) into the 1D heat equa-
tion (2) gives

j+p/2

Â
i=j�p/2

u̇i(t)L
(j)
i
(xj) = k

j+p/2

Â
i=j�p/2

ui(t)
d

2
L
(j)
i

dx2

�����
x=xj

+ g(xj, t) (j = 2, . . . , n)

=) u̇j(t) = k
j+p/2

Â
i=j�p/2

ui(t)
d

2
L
(j)
i

dx2

�����
x=xj

+ g(xj, t) (j = 2, . . . , n)

(9) Just as we saw for the Poisson problem,
do not forget that (9) is not the full
story. We need to incorporate boundary
conditions to get a solvable system of
equations! We will discuss this subtlety
in the next section.

This is an initial value problem for advancing the approximate
solution at xj, uj. This fact is why this procedure of discretizing in
space first is called the method of lines: the result is an IVP for the
solution at each spatial point xj. So we can conceptually think of the
solution at each spatial point evolving along a “line” over time.

Take a moment to appreciate what we have done here: we have
taken a complex IBVP that depends on space and time, used local
interpolation in space, and simplified the problem to an initial value
problem that only depends on time. We can solve this IVP using
our favorite time stepping method (e.g., backward Euler, one of the
Adams-Bashforth methods, etc.).

(2)
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which resulted in the following expression for our PDE:

For p=2, this term simplified to…  
1

Δx2
(uj−1(t) − 2uj(t) + uj+1(t))
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and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference
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We used a uniformly distributed set of points:

which results in a matrix system with a typical IVP structure.



This time: spatial discretization with local spectral 
methods

5

This time, we will approximate the solution  on the subspace of piecewise-linear 
functions  such that:

ua(x, t)
𝒱L

n

̂u(x, t) =
n

∑
i=2

ci(t)bi(x)

We assume time dependence is captured 
by coefficients  and spatial dependence is 

captured by basis functions 
ci

bi

a local spectral method: the finite element method for bvps, part 1 2

that is quite cumbersome to work with.
The crux of the finite element method is to get around this chal-

lenge by observing that the energy inner product involves integrals
over the interval [a, b]. Thus, if we can choose a set of basis functions
that are only nonzero for a small portion of the interval [a, b], we can
produce a linear system G that is dominated by zeros, and thus much
easier to work with.

A figure is helpful to illustrate this
concept. We will define a set of “hat”
basis functions later in this lecture that
are depicted in figure 1. Notice that
because they are only nonzero over
a small sub-interval of [a, b], many of
the inner product terms in G would
vanish. For example, the only inner
products that are nonzero involving f2
are (f2, f2)E, (f2, f3)E, and (f3, f2)E.

Figure 1: Five locally defined “hat”
basis functions.

This philosophy driving finite element methods is sufficiently
important that it gets its own orange box:

Philosophy behind the finite element method

The finite element method is a spectral method that uses
locally defined functions to create a matrix G with predomi-
nately zero entries to facilitate a fast solution of Gc = b.

This goal of creating locally defined basis functions within this
spectral method framework will be our focus for today. To facilitate
this goal, we must ask ourselves some questions: what is a suitable
space V that allows as a basis a set of locally defined functions? How
do we define these basis functions mathematically? Finally, how
do we use special V and set of local basis functions to solve the 1D
Poisson problem? We will answer each of these questions in turn in
this week’s typed notes.

b2

b3

b4

bn−1

bn

Recall, any piecewise linear function  can 
be written in terms of the basis functions and 
its nodal values  as 

, so…

q(x)

q(x1), q(x2), …, q(xn)

q(x) =
n

∑
i=2

q(xi)bi(x)

bi(x) =

1
Δx [x − a − (i − 2)Δx], if x ∈ [xi−1, xi]

− 1
Δx [x − a − iΔx], if x ∈ [xi, xi+1]

0, else

i = 2,…, n

̂u(x, t) =
n

∑
j=2

ui(t)bi(x) (3)



How do we get our approximation? 
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̂u(x, t) =
n

∑
j=2

ui(t)bi(x) How do we determine our coefficients ?ui(t)

Recall that spectral methods for BVPs minimize the overall (least-squares) error:

The  which satisfies (3) satisfies the following for some inner product ̂u(x, t) ( ⋅ , ⋅ )

̂u(x, t) = min
̂u∈𝒱L

n

| |u − ̂u | |2
(3)

(u − ̂u, bj) = 0, j = 2,…, n (4)
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Based on (4), the optimal  then satisfies the following for the 1D Poisson equation BVPŝu(x, t)

(b0, b0) (b1, b0) ⋯ (bn−1, b0) (bn, b0)
(b0, b1) (b1, b1) ⋯ (bn−1, b1) (bn, b1)

⋮ ⋮ ⋯ ⋮ ⋮
(b0, bn−1) (b1, bn−1) ⋯ (bn−1, bn−1) (bn, bn−1)
(b0, bn) (b1, bn) ⋯ (bn−1, bn) (bn, bn)

c0
c1
⋮

cn−1
cn

=

( f, b0)
( f, b1)

⋮
( f, bn−1)
( f, bn)

a local spectral method: the finite element method for bvps, part 1 6

(with piecewise linear functions). The result is

1
Dx

2

6666664

�2 1 · · · 0 0
1 �2 · · · 0 0
...

... · · ·
...

...
0 0 · · · �2 1
0 0 · · · 1 �2

3

7777775

2

6666664

u2

u3
...

un�1
un

3

7777775
=

2

666666664

R a+2Dx
a f (x)f2(x)dxR a+3Dx
a+Dx f (x)f3(x)dx

...
R a+(n�1)Dx

a+(n�3)Dx f (x)fn�1(x)dx
R a+nDx

a+(n�2)Dx f (x)fn(x)dx

3

777777775

(16)
Solving this matrix system gives us the values of our approximate

solution at the nodes x1, . . . , xn.

∫ a+2Δx
a

f(x)b2(x)dx

∫ a+3Δx
a+Δx

f(x)b3(x)dx
⋮

∫ a+(n)Δx
a+(n−2)Δx

f(x)bn−1(x)dx

∫ a+(n+1)Δx
a+(n−1)Δx

f(x)bn(x)dx

Which reduces to the following if we assume a linear-piecewise subspace (and corresponding 
basis functions

(u − ̂u, bj) = 0, j = 2,…, n (4)



What changes for IBVPs?
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When we move from BVPs to IBVPs, two questions now arise:
(1) What is the appropriate inner product to use?
(2) How does the resulting matrix system change for our PDE (rather than the ODE we 

solved in BVPs)?

(1) What is the appropriate inner product to use?

The heat equation we are solving is just an unsteady version of the Poisson 
equation, so the same notion of energy product applies!

( f, g)E = κ∫
b

a
f′ (x, t)g′ (x, t)dx, ∀f, g ∈ 𝒱L

n

Partial derivatives with respect to x



How does the matrix system change?
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̂u(x, t) =
n

∑
j=2

ui(t)ϕi(x) (3)

(u − ̂u, ϕj)E = 0, j = 2,…, n (4)

n

∑
i=2

ui(ϕi, ϕj)E = (u, ϕj)E, j = 2,…, n (7)

Assumed approximation

Least-squares condition

(u −
n

∑
i=2

uiϕi, ϕj)E = 0, j = 2,…, n (5)

(
n

∑
i=2

uiϕi, ϕj)E = (u, ϕj)E, j = 2,…, n (6)
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Let’s expand the RHS of (7)

This looks promising EXCEPT for the  term in the RHSu
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But we actually have an assumed approximation for  !u

Plugging back into (7)…
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Re-arranging…

n

∑
i=2

·ui(t)(ϕi, ϕj)s = −
n

∑
i=2

ui(ϕi, ϕj)E + (g, ϕj)s, j = 2,…, n

Then in matrix form we get the following…

Which we can write as… M ·u = Au + g(t) (19)
But we want an IVP that looks like ·u = f (u, t)
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Re-arrange to… M ·u = Au + g(t)

·u = M−1(Au + g(t))
·u = f(u, t)

Use your favorite time stepping method 
to solve this IVP!

What is ? From FEMs for BVPs, we know that…A

ϕ′ i(x)

a local spectral method: the finite element method for bvps, part 1 5

method to solve a BVP. The only difference is that we are approximat-
ing our solution on a space comprised of locally defined functions
(V L

n ) rather than globally defined functions (e.g., Pn
0 ). Because we

are still using a spectral method, we may directly use the expression
Gc = b provided by (1).

There are some simplifications that arise to this expression by
virtue of our choice of V L

n and our basis selection for this space. First,
note that the coefficients cj = uj (where uj is an approximation to
u(xj)), by virtue of the property (5) that our basis functions satisfy
which lets us write the approximation to u(x) in terms of its nodal
values. To facilitate our exploration of the

inner products in G, remember that the
energy inner product is defined as

( f , g)E =
Z b

a
f 0(x)g0(x)dx, 8 f , g 2 V

(11)

Second, the terms in G and b simplify considerably. Let us con-
sider the entries of G in detail by evaluating the inner products.
Note that the hat functions defined in (7) have derivatives defined
piecewise as

f0
i(x) =

8
>><

>>:

1
Dx x 2 [xi�1, xi]

� 1
Dx x 2 [xi, xi+1]

0 else

(12)

for i = 2, . . . , n. We will use this expression to evaluate the inner
product in terms in G. From the definition of f0(x) given in (12), it is
clear that the only inner products that will be nonzero are

(fi�1, fi)E, (fi, fi)E, (fi, fi+1)E (13)

for i = 3, . . . , n � 1. We can compute these analytically:

(fi�1, fi)E =
Z a+iDx

a+(i�1)Dx

✓
�1
Dx

◆✓
1

Dx

◆
dx = � 1

Dx

(fi, fi)E =
Z a+(i+1)Dx

a+(i�1)Dx

✓
1

Dx

◆✓
1

Dx

◆
dx =

2
Dx

(fi, fi+1)E =
Z a+(i+1)Dx

a+iDx

✓
�1
Dx

◆✓
1

Dx

◆
dx = � 1

Dx

(14)

Regarding b, we have that

( f , fi) =
Z b

a
f (x)fi(x)dx =

Z a+(i+1)Dx

a+(i�1)Dx
f (x)fi(x)dx (15)

for i = 2, . . . , n.
We can put all of these results together to get the form that the

linear system (1) takes when applying the finite element method
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linear system (1) takes when applying the finite element method

(ϕi, ϕi−1)z

(ϕi, ϕi)E

(ϕi, ϕi+1)E
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What about ?M

Our only non-zero terms will be    (ϕi−1, ϕi)s, (ϕi, ϕi)s, (ϕi, ϕi+1)s

These terms end up being…

Using Mathematica…(ϕi−1, ϕi)s = ∫
a+iΔx

a+(i−1)Δx
ϕi−1(x)ϕi(x)dx =

1
6

Δx

(ϕi, ϕi)s = ∫
a+(i+1)Δx

a+(i−1)Δx
ϕi(x)ϕi(x)dx =

2
3

Δx

(ϕi, ϕi+1)s = ∫
a+(i+1)Δx

a+iΔx
ϕi(x)ϕi+1(x)dx =

1
6

Δx

Which gives the following for …M



Solve the resulting IVP!
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We have now re-formulated our IBVP, defined by

Week 13
Finite difference methods for

initial boundary value problems (IBVPs)

Over the last several weeks, we have numerically solved initial value
problems and boundary value problems. The subject of the next
several lectures will be to combine our tools for IVPs with our tools
for solving BVPs. That is, we will develop finite difference methods
for initial boundary value problems (IBVPs). This class of differential
equations depends on both space and time. To enable us to use our
previously developed tools, our approach will be to first discretize
the equations in space to arrive at an IVP. Doing this allows us to
then directly apply our techniques for solving IVPs. We will focus
on developing our method for the heat equation—one of the most
important canonical IBVPs.

But these same techniques can be
extended beyond the heat equation and
into a broad range of IBVPs!This week, we will focus on developing a finite difference method

for the heat equation. That is, we will solve the heat equation using
local interpolation. Next week, we will switch gears and consider
solving the heat equation using a finite element method. That is, we
will consider applying local spectral methods to the solve the heat
equation.

1 The heat equation

The heat equation may be written for a generic n-dimensional prob-
lem as

∂u

∂t
= kr2

u + g(x, t), 0 < t  T, x 2 W (1)

where r2 is the Laplace operator in n spatial dimensions and g is

For clarity, we explicitly state that we
are solving the heat equation over the
time window 0 < t  T and within the
domain W. Note that as this is an initial
boundary value problem, we require
both an initial condition and appropriate
set of boundary conditions to advance
the solution in time.

a prescribed source term. We will restrict our attention to n = 1 for
now, so that the heat equation reduces to

∂u

∂t
= k

∂2
u

∂x2 + g(x, t), 0  t  T, a  x  b (2)

Note that we are defining W = [a, b] for this 1D case.
The initial condition for this problem is relatively straightforward:

we apply a constraint on what the solution u is at time t = 0. There
is more flexibility in the boundary conditions we consider. Let us
assume that we have Dirichlet boundary conditions (that is, we
prescribe temperature at the endpoints). Thus, our constraints for the
problem are

As with the Poisson problem, there are
a variety of boundary conditions we
could consider here, including mixing
a Neumann condition (prescribing
the heat flux) at one end and the
temperature at the other end.

u(x, t = 0) = h(x)

u(x = a, t) = ga(t)

u(x = b, t) = gb(t)

(3)

u(x, t = 0) = η(x)

u(x = a, t) = ga(t) = 0

u(x = b, t) = gb(t) = 0

as an IVP, defined by
·u = f(u, t) = M−1(Au + g(t))

which we can solve with any finite difference method! 

Are there certain classes of FD methods that 
are better for the heat equation though?



Some important facts
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Similar to FD methods for IBVPs, but here are some important facts about FEM for IBVPs:

Using method of lines to (i) discretize in space via an FEM method and (ii) solve the 
resulting IVP with a FD method gives convergent solutions

The numerical solution will approach the true solution 
as ,  Δx → 0 Δt → 0

The spatial convergence rate of this method is equal to the order of the spatial 
discretization error. 

E.g., for the second order central difference method, 
the error in space is O(Δx2)

The temporal convergence rate of this method is equal to the order of the temporal 
discretization error. 

E.g., using the trapezoid method to solve the spatially 
discrete IVP, the error in time is O(Δt2)


