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Lecture 21: IBVPs (2)

Today:

• Finite difference methods applied to initial boundary value 
problems (IBVPs)
• Leverage the spatially discretized initial value problem to 

advance the solution in time
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Where are we up to now?
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Previously. Finite difference methods for IBVPs — PDEs that depend on time and space
• Use an FD method to discretize the PDE in space  gives an IVP 
• Solve the resulting IBVP with an FD method

→

This approach is called the method of lines

Today. 
• Details on solving the spatially discrete IVP  
• Seeing an example

week 13 finite difference methods for initial boundary value problems (ibvps) 4

This procedure may seem somewhat abstract, as we have left
things in terms of a generic polynomial order p and have not ad-
dressed the boundary conditions in detail. To provide a concrete
example, we will consider the specific case of p = 2 next.

That is, we will use a second-order
representation in space.

3 The specific case of p = 2

Let us consider the specific case where p = 2. This second-order
method is the one we employed during our study of the Poisson
problem (see the typed Lecture 15 notes). In this case, we know that
the righthand side of (9) simplifies to

1
Dx2 [uj�1(t)� 2uj(t) + uj+1(t)] (10)

which allows us to write (9) in matrix form as
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or more succinctly as .u = Au + g. The initial condition associated with
this IVP is

u(t = 0) =
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This IVP is of the form .u = f (u, t) with f (u, t) = Au + g(t), and we
may therefore advance this solution in time using our favorite time
stepping method.

Notice that we have constructed our
initial value problem (11) using the
truncated form of the linear system.
That is, we have omitted u1 and un+1
from the solution variables that we are
computing. This is natural, as u1 and
un+1 are prescribed for all time, and
there is no need to solve a differential
equation to compute them. Indeed,
by contrast, if we had included these
variables as unknowns in our system,
we would have to modify our initial
value problem as
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where the 0 in the (1, 1) and (n + 1, n +
1) indices of the lefthand side matrix
have arisen to account for the fact that
there is no initial value problem for u1
and un+1; these variables are prescribed.
Because this lefthand side matrix is not
invertible, we can not readily transform
the linear system to something of the
form .u = f (u, t). As a result, we will
use the truncated variant of the linear
system for solving these IBVPs.

4 An example

Let us illustrate the fruits of our labor by applying our second order
finite difference method to solve the 1D heat equation with a = 2, b =

16, k = 1, g(x, t) = ga(t) = gb(t) = 0 and

h(x) = exp

2
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x � a+b
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where s = 0.3. That is, our initial condition is a Gaussian function
centered at the middle of our domain and with a standard deviation
of 0.3.

Can write more succinctly as
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where s = 0.3. That is, our initial condition is a Gaussian function
centered at the middle of our domain and with a standard deviation
of 0.3.



Solving the IVP using explicit methods

3

We can write the spatially discrete IVP as , where ·u = f(u, t) f(u, t) = Au + g(t)

If we were to apply forward Euler:

uk+1 = uk + Δtf(uk, tk)

uk+1 = uk + Δt(Auk + g(tk))

Start with  given by the initial condition and can advance from there!u0

Or for AB2:

uk+1 = uk +
Δt
2 [−f(uk−1, tk−1) + 3f(uk, tk)]

uk+1 = uk +
Δt
2 [ − (Auk−1 + g(tk−1)) + 3(Auk + g(tk))]

Start with  given by the initial condition and get  using a one-step method like 
forward Euler or Heun’s.

Can advance from there!

u0 u1



Stability restrictions for the heat equation

4

It turns out that the heat equation is a stiff IVP  imposes severe stability restrictions⟹
Unlike the N body problem, 
where you could use explicit 
methods without issue!

Explicit methods are therefore not well suited to solving the spatially discretized heat 
equation. Want a method with a big stability region…

initial value problems: absolute stability 4

(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as
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with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression
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As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
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How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the
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Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk
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(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as
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For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:
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How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

initial value problems: absolute stability 7

%Plot stability region

contourf( dtlr, dtli, r, [1 2], ’edgecolor’,’none’)

shading flat

colormap( cmap )

axis equal

Note the use of the built-in roots
command in place of using (24) directly.

This handy function makes it easier to

generalize the procedure for plotting

stability regions to cases where the

polynomial function is higher order.

For completeness, we show the stability regions for other Adams

methods in figure 6. These figures were created using appropriately

adapted versions of the above code.

(a) (b) (c)

Figure 6: Stability region for the 3-

step Adams-Bashforth (a), 2-step

Adams-Moulton (b), and 3-step Adams-

Moulton (c) methods.3 Convergence

Let us synthesize our results about truncation error and absolute

stability to determine when a method applied to an IVP will be

accurate.

Convergence of numerical methods for IVPs

A numerical method for a method is convergent if and only if

it has a truncation error that goes to zero as Dt ! 0 and has

an absolute stability region that includes llDt = 0. Moreover,

if the method is convergent, the rate of convergence of the

method is equal to the order of the truncation error (that is,

the global error will decay at the same rate as the truncation

error).
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(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as
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with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression
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As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via
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Solving the IVP using backward Euler

5

We can write the spatially discrete IVP as , where ·u = f(u, t) f(u, t) = Au + g(t)

If we were to apply backward Euler:

uk+1 = uk + Δtf(uk+1, tk+1)

uk+1 = uk + Δt(Auk+1 + g(tk+1))

We can rearrange this to get an equation for :uk+1

uk+1 − ΔtAuk+1 = uk + Δtg(tk+1)

⟹ (I − ΔtA)uk+1 = uk + Δtg(tk+1)

⟹ uk+1 = (I − ΔtA)−1(uk + Δtg(tk+1))

Start with  and can advance from there!u0

Let’s see how to apply a better suited time stepping method to the spatially discrete heat 
equation. Start with BE… 

What would the equations look like for the trapezoid method?



Results for an example problem
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Consider , and a = 2, b = 16, κ = 1, g(x, t) = 0, ga(t) = 0, gb(t) = 0
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This procedure may seem somewhat abstract, as we have left
things in terms of a generic polynomial order p and have not ad-
dressed the boundary conditions in detail. To provide a concrete
example, we will consider the specific case of p = 2 next.

That is, we will use a second-order
representation in space.

3 The specific case of p = 2

Let us consider the specific case where p = 2. This second-order
method is the one we employed during our study of the Poisson
problem (see the typed Lecture 15 notes). In this case, we know that
the righthand side of (9) simplifies to

1
Dx2 [uj�1(t)� 2uj(t) + uj+1(t)] (10)

which allows us to write (9) in matrix form as
.2

6666664

u2

u3
...

un�1
un

3

7777775
=

k

Dx2

2

6666664

�2 1
1 �2 1

. . . . . . . . .
1 �2 1

1 �2

3

7777775

2

6666664

u2

u3
...

un�1
un

3

7777775
+

2

66666664

g(x2, t) + kga(t)
Dx2

g(x3, t)
...

g(xn�1, t)

g(xn, t) + kgb(t)
Dx2

3

77777775

(11)
or more succinctly as .u = Au + g. The initial condition associated with
this IVP is

u(t = 0) =

2

6666664

h(x2)

h(x3)
...

h(xn�1)

h(xn)

3

7777775
(12)

This IVP is of the form .u = f (u, t) with f (u, t) = Au + g(t), and we
may therefore advance this solution in time using our favorite time
stepping method.

Notice that we have constructed our
initial value problem (11) using the
truncated form of the linear system.
That is, we have omitted u1 and un+1
from the solution variables that we are
computing. This is natural, as u1 and
un+1 are prescribed for all time, and
there is no need to solve a differential
equation to compute them. Indeed,
by contrast, if we had included these
variables as unknowns in our system,
we would have to modify our initial
value problem as

2

66666666664

0
1

1
. . .

1
1

0

3

77777777775

.2

66666666664

u1
u2
u3
...

un�1
un

un+1

3

77777777775

=

k

Dx2

2

66666666664

Dx
2

k
1 �2 1

1 �2 1
. . .

. . .
. . .

1 �2 1
1 �2 1

Dx
2

k

3

77777777775

2

66666666664

u1
u2
u3
...

un�1
un

un+1

3

77777777775

+

2

66666666664

�ga(t)
g(x2, t)
g(x3, t)

...
g(xn�1, t)

g(xn, t)
�gb(t)

3

77777777775

(13)
where the 0 in the (1, 1) and (n + 1, n +
1) indices of the lefthand side matrix
have arisen to account for the fact that
there is no initial value problem for u1
and un+1; these variables are prescribed.
Because this lefthand side matrix is not
invertible, we can not readily transform
the linear system to something of the
form .u = f (u, t). As a result, we will
use the truncated variant of the linear
system for solving these IBVPs.

4 An example

Let us illustrate the fruits of our labor by applying our second order
finite difference method to solve the 1D heat equation with a = 2, b =

16, k = 1, g(x, t) = ga(t) = gb(t) = 0 and

h(x) = exp

2

4�
 

x � a+b

2
2s

!2
3

5

where s = 0.3. That is, our initial condition is a Gaussian function
centered at the middle of our domain and with a standard deviation
of 0.3.

where σ = 0.3

Simulating using our 2nd order central difference scheme for spatial discretization and the 
trapezoid method, with , givesΔt = Δx ≈ 0.07
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In this example, the initial value problem was advanced using a
trapezoid method. Figure 1 shows an overlay of the solution at vari-
ous times obtained using Dt = Dx ⇡ 0.07. The figure demonstrates
the intuitive behavior that the peak value of the solution lessens and
the x-extent over which the solution is nonzero gets larger as time
progresses. This is typical of the diffusive behavior associated with the
heat equation.

Figure 1: An overlay of the numerical
solution of the 1D heat equation at
various instances in time. Each plot
is displaced in the y-direction by the
amount of time that has elapsed.

5 Some more notes

We may feel some reassurance that our numerical solution gives us
physically intuitive behavior. At the same time, we have left many
questions unanswered. Does the numerical solution converge to the
true solution? If so, how does this convergence depend on Dt and
Dx? Finally, what time stepping methods are best suited for solving
the initial value problem (11) obtained by discretizing the equations
in space?

Unfortunately, we will not have time to discuss these topics in
detail in this class. So here are the punchline answers to those ques-
tions:

1. Using a finite difference method in space and time does produce
convergent solutions.

2. The convergence rate in space is equal to the order of the spatial



Some important facts
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We don’t have time to prove, but here are some important facts:

Using method of lines to (i) discretize in space via a FD method and (ii) solve the 
resulting IVP with a FD method gives convergent solutions

The numerical solution will approach the true solution 
as ,  Δx → 0 Δt → 0

The spatial convergence rate of this method is equal to the order of the spatial 
discretization error. 

E.g., for the second order central difference method, 
the error in space is O(Δx2)

The temporal convergence rate of this method is equal to the order of the temporal 
discretization error. 

E.g., using the trapezoid method to solve the spatially 
discrete IVP, the error in time is O(Δt2)

While we unfortunately do not have time to go through the details of these convergence 
properties, a very brief overview is that convergence depends on (you guessed it!) i) using 
Taylor series of the truncation error and ii) combining this analysis with a notion of stability. 


