I ILLINOIS

Lecture 21: IBVPs (2)

Today:

* Finite difference methods applied to initial boundary value
problems (IBVPs)
* Leverage the spatially discretized initial value problem to
advance the solution in time



Where are we up to now?

Previously. Finite difference methods for IBVPs — PDEs that depend on time and space

» Use an FD method to discretize the PDE in space — gives an IVP
* Solve the resulting IBVP with an FD method

& This approach is called the method of lines
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Can write more succinctly as # = Au+ g

Today.
* Details on solving the spatially discrete IVP
* Seeing an example



Solving the IVP using explicit methods

We can write the spatially discrete IVP as i = f(u, 7), where f(u, #) = Au + g(7)
If we were to apply forward Euler:

u,. =u, + Arf(u, 1)

U, = U+ Ar(Au + g(1))

Start with u, given by the initial condition and can advance from there!

Or for AB2:
At
uk+1 —_ uk + 7 [—f(uk_l, tk—l) + 3f(uk, tk)]
At

W) = W+ —= | = (Awe; + 8(5_))) + 3(Aug + g(1))

Start with u,, given by the initial condition and get u; using a one-step method like
forward Euler or Heun’s.

Can advance from there!



Stability restrictions for the heat equation

[t turns out that the heat equation is a stiff IVP = imposes severe stability restrictions

K Unlike the N body problem,
where you could use explicit

methods without issue!

Explicit methods are therefore not well suited to solving the spatially discretized heat
equation. Want a method with a big stability region...
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Solving the IVP using backward Euler

Let’s see how to apply a better suited time stepping method to the spatially discrete heat
equation. Start with BE...

We can write the spatially discrete IVP as i = f(u, 7), where f(u, #) = Au + g(7)

If we were to apply backward Euler:
Wy = W+ Ak g, Gy )

W, = W+ Af(Awy + 8(5y))
We can rearrange this to get an equation for u, ;:

Start with U, and can advance from there!

What would the equations look like for the trapezoid method?



Results for an example problem

Considera =2,b=16,xk =1, gx,1) =0, g,(r) =0, g,(¥) =0, and

y — atb 2
2
n(x) =exp | — ( o ) where 6 = 0.3

Simulating using our 2nd order central difference scheme for spatial discretization and the
trapezoid method, with At = Ax = 0.07, gives

t =295
B /=0.00




Some important facts

We don’t have time to prove, but here are some important facts:

Using method of lines to (i) discretize in space via a FD method and (ii) solve the
resulting [IVP with a FD method gives convergent solutions

\

The numerical solution will approach the true solution
as Ax - 0, Ar— 0

The spatial convergence rate of this method is equal to the order of the spatial

discretization error. \

E.g., for the second order central difference method,
the error in space is O(Ax?)

The temporal convergence rate of this method is equal to the order of the temporal

discretization error. \

E.g., using the trapezoid method to solve the spatially
discrete IVP, the error in time is O(A??)

While we unfortunately do not have time to go through the details of these convergence
properties, a very brief overview is that convergence depends on (you guessed it!) i) using
Taylor series of the truncation error and ii) combining this analysis with a notion of stability.



