
Finite difference methods for
initial boundary value problems (IBVPs)

Over the last several weeks, we have numerically solved initial value
problems and boundary value problems. The subject of the next
several lectures will be to combine our tools for IVPs with our tools
for solving BVPs. That is, we will develop finite difference methods
for initial boundary value problems (IBVPs). This class of differential
equations depends on both space and time. To enable us to use our
previously developed tools, our approach will be to first discretize
the equations in space to arrive at an IVP. Doing this allows us to
then directly apply our techniques for solving IVPs. We will focus
on developing our method for the heat equation—one of the most
important canonical IBVPs.

But these same techniques can be
extended beyond the heat equation and
into a broad range of IBVPs!This week, we will focus on developing a finite difference method

for the heat equation. That is, we will solve the heat equation using
local interpolation. Next week, we will switch gears and consider
solving the heat equation using a finite element method. That is, we
will consider applying local spectral methods to the solve the heat
equation.

1 The heat equation

The heat equation may be written for a generic n-dimensional prob-
lem as

∂u
∂t

= κ∇2u + g(x, t), 0 < t ≤ T, x ∈ Ω (1)

where ∇2 is the Laplace operator in n spatial dimensions and g is

For clarity, we explicitly state that we
are solving the heat equation over the
time window 0 < t ≤ T and within the
domain Ω. Note that as this is an initial
boundary value problem, we require
both an initial condition and appropriate
set of boundary conditions to advance
the solution in time.

a prescribed source term. We will restrict our attention to n = 1 for
now, so that the heat equation reduces to

∂u
∂t

= κ
∂2u
∂x2 + g(x, t), 0 ≤ t ≤ T, a ≤ x ≤ b (2)

Note that we are defining Ω = [a, b] for this 1D case.
The initial condition for this problem is relatively straightforward:

we apply a constraint on what the solution u is at time t = 0. There
is more flexibility in the boundary conditions we consider. Let us
assume that we have Dirichlet boundary conditions (that is, we
prescribe temperature at the endpoints). Thus, our constraints for the
problem are

As with the Poisson problem, there are
a variety of boundary conditions we
could consider here, including mixing
a Neumann condition (prescribing
the heat flux) at one end and the
temperature at the other end.

u(x, t = 0) = η(x)

u(x = a, t) = ga(t)

u(x = b, t) = gb(t)

(3)

for some prescribed functions η(x), ga(t), and gb(t).
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2 Numerical discretization: the method of lines

How will we go about solving this problem that depends on space
and time? We will combine our methods for solving time-dependent
problems with those for solving space-dependent problems. The trick
to accomplishing this us to first discretize the IBVP in space. Doing
this will result in an IVP, which we can then solve using our favorite
time integrator. This procedure is referred to as the method of lines.
Remember that our focus this week is on finite difference methods,
so we will focus on using local interpolation. Let us see how this
process works in detail.

2.1 Step 1: discretize in space
If you feel uncomfortable with the
presentation in section 2.1, now is a
great time to go back to the lecture
notes on the 1D Poisson problem. You
will find many similarities between the
two sets of notes!

We first discretize the spatial domain, or break up the continuous
space variable into a finite number of pieces as

xj = a +
(b− a)(j− 1)

n
, j = 1, . . . , n + 1 (4)

Here is a reminder of what the spatial
discretization looks like.

We must also find a way of approximating our infinite-dimensional
solution u(x, t). We will focus on approximating this function in
space first, and will do this using local interpolation. That is, we will
approximate the spatial dependence of u in terms of a finite number
of locally defined basis functions in space.

Buoyed by our success with the Poisson problem, we will continue
to use a centered representation in terms of Lagrange polynomials to
approximate our solution in space. Recall from lecture 15 that if we
use a locally defined pth order polynomial, we require p points in
addition to xj. We will use the points {xj−p/2, . . . , xj, . . . , xj+p/2}. Recall that this selection of points is

specific to centered representations,
and requires that p be even. We may, of
course, use biased representations such
as a one-sided representation using the
points {xj, . . . , xj+p}. The motivation
for using a centered representation for
the heat equation is that we expect the
information to be equally valuable on
the left of a given point as on the right.

We will approximate u(x, t) over the interval xj−p/2 ≤ x ≤ xj+p/2

as

u(x, t) ≈
j+p/2

∑
i=j−p/2

bi(t)L(j)
i (x) (5)

where the L(j)
i (x) represents our handy Lagrange basis polynomials

and the bi(t) represent the unknown coefficients in our expansion
(note that these coefficients must be functions of time, since we
require that our Lagrange polynomials to be only functions of x). We
have expressed these unknown coefficients as bi to be as general as
possible, but notice that (just as we saw for the Poisson problem) they
simplify considerably. In particular, at any instance in time we have

This simplification follows from the
beautiful property of the Lagrange
polynomials that

L(j)
i (xj) =

{
0 i 6= j
1 i = j

(6)

u(xj, t) ≈
j+p/2

∑
i=j−p/2

bi(t)L(j)
i (xj)

= bj(t)

(7)
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and therefore that bj(t) is an approximation of u(xj, t). Thus, for
finite difference methods we may write that

u(x, t) ≈
j+p/2

∑
i=j−p/2

ui(t)L(j)
i (x) (8)

where ui(t) ≈ u(xi, t). Thus, computing the various coefficients bi(t)
is equivalent to calculating the values ui(t) that approximate that
exact solution u at the grid point xi at some instance in time.

2.2 The initial value problem

We have replaced the continuous spatial variable x by the n + 1 points
{x1, . . . , xn+1}, and have restricted the spatial dependence of the
function u to be a linear combination of the Lagrange polynomials.
We will now show that the result of this spatial discretization is to
create an initial value problem.

Plugging our approximation for u(x, t) (8) into the 1D heat equa-
tion (2) gives

j+p/2

∑
i=j−p/2

u̇i(t)L(j)
i (xj) = κ

j+p/2

∑
i=j−p/2

ui(t)
d2L(j)

i
dx2

∣∣∣∣∣
x=xj

+ g(xj, t) (j = 2, . . . , n)

=⇒ u̇j(t) = κ
j+p/2

∑
i=j−p/2

ui(t)
d2L(j)

i
dx2

∣∣∣∣∣
x=xj

+ g(xj, t) (j = 2, . . . , n)

(9) Just as we saw for the Poisson problem,
do not forget that (9) is not the full
story. We need to incorporate boundary
conditions to get a solvable system of
equations! We will discuss this subtlety
in the next section.

This is an initial value problem for advancing the approximate
solution at xj, uj. This fact is why this procedure of discretizing in
space first is called the method of lines: the result is an IVP for the
solution at each spatial point xj. So we can conceptually think of the
solution at each spatial point evolving along a “line” over time.

Take a moment to appreciate what we have done here: we have
taken a complex IBVP that depends on space and time, used local
interpolation in space, and simplified the problem to an initial value
problem that only depends on time. We can solve this IVP using
our favorite time stepping method (e.g., backward Euler, one of the
Adams-Bashforth methods, etc.).

This procedure may seem somewhat abstract, as we have left
things in terms of a generic polynomial order p and have not ad-
dressed the boundary conditions in detail. To provide a concrete
example, we will consider the specific case of p = 2 next.

That is, we will use a second-order
representation in space.
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3 The specific case of p = 2

Let us consider the specific case where p = 2. This second-order
method is the one we employed during our study of the Poisson
problem (see the associated typed lecture notes for a refresher). In
this case, we know that the righthand side of (9) simplifies to

1
∆x2 [uj−1(t)− 2uj(t) + uj+1(t)] (10)

which allows us to write (9) in matrix form as
.

u2

u3
...

un−1

un

 =
κ

∆x2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




u2

u3
...

un−1

un

+


g(x2, t) + κga(t)
∆x2

g(x3, t)
...

g(xn−1, t)
g(xn, t) + κgb(t)

∆x2


(11)

or more succinctly as .u = Au + g. The initial condition associated with
this IVP is

u(t = 0) =


η(x2)

η(x3)
...

η(xn−1)

η(xn)

 (12)

This IVP is of the form .u = f (u, t) with f (u, t) = Au + g(t), and we
may therefore advance this solution in time using our favorite time
stepping method.

Notice that we have constructed our
initial value problem (11) using the
truncated form of the linear system.
That is, we have omitted u1 and un+1
from the solution variables that we are
computing. This is natural, as u1 and
un+1 are prescribed for all time, and
there is no need to solve a differential
equation to compute them. Indeed,
by contrast, if we had included these
variables as unknowns in our system,
we would have to modify our initial
value problem as

0
1

1
. . .

1
1

0



.

u1
u2
u3
...

un−1
un

un+1


=

κ

∆x2



∆x2

κ
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1

∆x2

κ





u1
u2
u3
...

un−1
un

un+1



+



−ga(t)
g(x2, t)
g(x3, t)

...
g(xn−1, t)

g(xn, t)
−gb(t)


(13)

where the 0 in the (1, 1) and (n + 1, n +
1) indices of the lefthand side matrix
have arisen to account for the fact that
there is no initial value problem for u1
and un+1; these variables are prescribed.
Because this lefthand side matrix is not
invertible, we can not readily transform
the linear system to something of the
form .u = f (u, t). As a result, we will
use the truncated variant of the linear
system for solving these IBVPs.

4 An example

Let us illustrate the fruits of our labor by applying our second order
finite difference method to solve the 1D heat equation with a = 2, b =

16, κ = 1, g(x, t) = ga(t) = gb(t) = 0 and

η(x) = exp

−( x− a+b
2

2σ

)2


where σ = 0.3. That is, our initial condition is a Gaussian function
centered at the middle of our domain and with a standard deviation
of 0.3.

In this example, the initial value problem was advanced using a
trapezoid method. Figure 1 shows an overlay of the solution at vari-
ous times obtained using ∆t = ∆x ≈ 0.07. The figure demonstrates
the intuitive behavior that the peak value of the solution lessens and
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the x-extent over which the solution is nonzero gets larger as time
progresses. This is typical of the diffusive behavior associated with the
heat equation.

Figure 1: An overlay of the numerical
solution of the 1D heat equation at
various instances in time. Each plot
is displaced in the y-direction by the
amount of time that has elapsed.

5 Some more notes

We may feel some reassurance that our numerical solution gives us
physically intuitive behavior. At the same time, we have left many
questions unanswered. Does the numerical solution converge to the
true solution? If so, how does this convergence depend on ∆t and
∆x? Finally, what time stepping methods are best suited for solving
the initial value problem (11) obtained by discretizing the equations
in space?

Unfortunately, we will not have time to discuss these topics in
detail in this class. So here are the punchline answers to those ques-
tions:

While we unfortunately do not have
time to go through the details of these
convergence properties, a very brief
overview is that convergence depends
on (you guessed it!) i) using Taylor
series of the truncation error and ii)
combining this analysis with a notion of
stability.

1. Using a finite difference method in space and time does produce
convergent solutions.

2. The convergence rate in space is equal to the order of the spatial
discretization used (e.g., for the p = 2 case above the conver-
gence rate is O(∆x2)). The convergence rate in time is equal to
the convergence rate of the time stepping method used for the
IVP (e.g., using a backward Euler method would yield an O(∆t)
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convergence rate). Notice the implications of this: one could use
a different order method in space than in time and get different
convergence rates in ∆x and ∆t. This is typically thought of as
undesirable, since often we want a solution that is comparably
accurate in space and time. So the order of the methods in space
and time are typically selected to match.

3. After spatially discretizing the heat equation, it is best to treat
the resulting IVP using an implicit method. That is, advancing
the IVP associated with the spatially discrete heat equation is best
done with a time stepping method that has a large stability region.
This consideration is the reason why I used a trapezoid method
in the example above. Note that this stiff property of the spatially
discrete IVP is a feature of the heat equation, and not generic to
spatially discrete IBVPs. There are many IVPs that produce non-
stiff IVPs when spatially discretized, which may be handled using
a favorite explicit time stepping method.

The reason that a time stepping method
with a large stability region is useful is
that the spatially discrete heat equation
is stiff : it has some eigenvalues very
near the origin but some that extend
very far into the left-half complex plane,
requiring very small time steps for
methods with small stability regions.
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