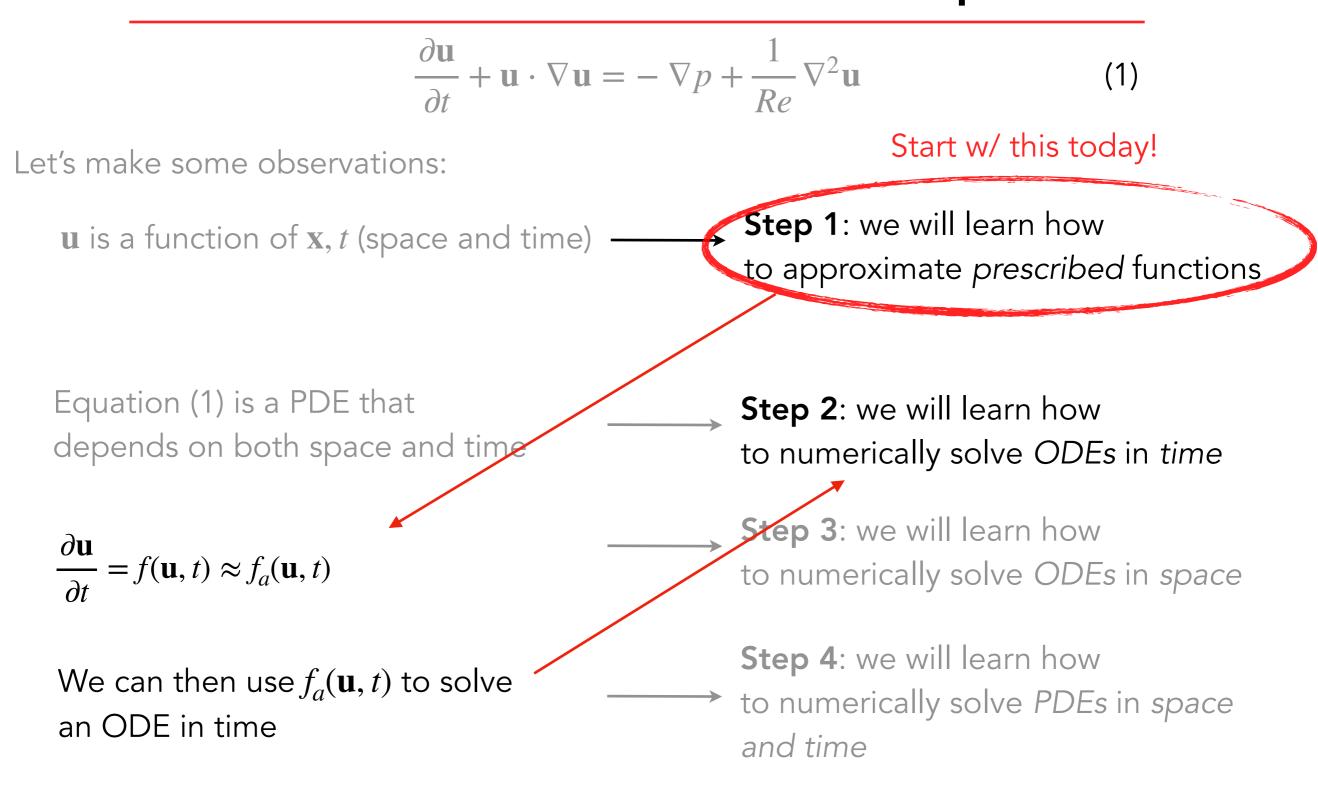
Lecture 2: Vector Spaces

Today:

- Introduce the problem of **approximating functions**
- Introduce key concepts vector space, subspace

Function approximation

Recall our roadmap...

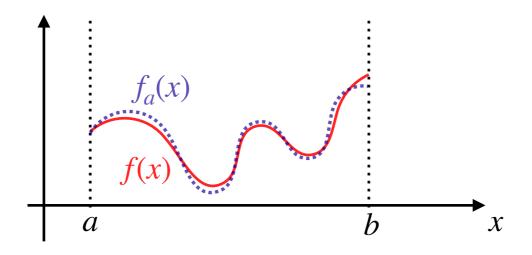


This is our roadmap for the semester!

Goal of function approximation

Goal: find a function, $f_a(x)$, that approximates a given function, f(x), accurately on $x \in [a, b]$

x belonging to the interval [a, b] —



How do we address these challenges? What are the key *challenges* to this approach?

- There are infinitely many possible functions! Can't handle on a computer
- What does accurately mean?

Introduce key concept of **norm** to quantify the size of the error

Restrict the set of possible functions we are considering Introduce key concepts of a **vector space & subspace**

Vector spaces and subspaces

Vector spaces

Definition: A <u>vector space</u> is a set of elements where addition and scalar multiplication are well defined

Let's check that this is a vector space:

(1) Additivity:

- consider two continuous functions, f(x), g(x)
- f(x) + g(x) makes sense (can add continuous functions)

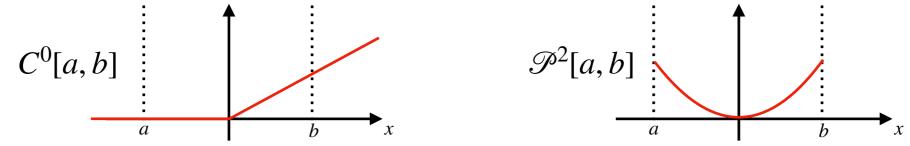
(2) Scalar multiplication:

- $---- \alpha$ belongs to the set of real numbers
- consider a function f(x) and a scalar number $\alpha \in \mathbb{R}$
- $\alpha f(x)$ makes sense (can multiply continuous functions by a scalar number)

Activity: Playing with vector spaces!

Activity:

- (A) Is $C^{k}[a, b]$ (the space of k-times differential functions on the interval [a, b]) a vector space?
- (B) What about $\mathscr{P}^{n}[a, b]$ (the space of all polynomials of degree n or less on the interval [a, b])?



Key takeaway: How did we know the answers to (1) are vector spaces??

Check that additivity and scalar multiplication makes sense

Some questions you may have right now.

- A) Why are vector spaces important for approximating functions?
- B) Why is it useful to approximate the desired function, f(x), with another function, $f_a(x)$?

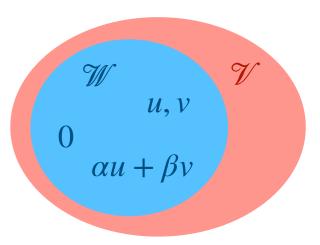
Subspaces

Don't forget about this!

Definition: A subset \mathcal{W} of vector space \mathcal{V} is called a <u>subspace</u> of \mathcal{V} if:

(1) $0 \in \mathscr{W}$ \leftarrow The 0 function, f(x) = 0, belongs to \mathscr{W} (2) $\alpha u + \beta v \in \mathscr{W}$ for $\alpha, \beta \in \mathbb{R}$ and $u, v \in \mathscr{W}$

Elements of the subspace stay in the subspace after basic arithmetic operations



Example: $\mathcal{W} = C^1[a, b]$ is a subspace of $\mathcal{V} = C[a, b]$

- (1) ${\mathscr W}$ is a subset of ${\mathscr V}$
- (2) $0 \in C^1[a, b]$
- (3) Multiply two differentiable functions by a scalar and add them together ⇒ get a differentiable function

Activity: Playing with subspaces!

Activity:

- (A) Is $C^k[a, b]$ (the space of k-times differential functions on the interval [a, b]) a subspace of C[a, b]?
- (B) $\mathscr{P}^{n}[a, b]$ (the space of all polynomials of degree n or less on the interval [a, b]) is a subspace of C[a, b]?

Some questions you may have now:

- (A) How do subspaces help with approximating functions?
- (B) Why is C[a, b] not a subspace of C¹[a, b] if C[a, b] satisfies definitions (1) & (2) of a subspace?

Vector spaces and subspaces: Why do we care?

Motivate by example:

- (1) Let's say we know $f \in C[a, b]$
- (2) I can pick a subspace $\mathscr{P}^{n}[a,b]$
- (3) Any degree-n polynomial can be written as

 $f_a(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$

(4) Turns the **ambiguous goal** of "approximate one of infinitely many possible f(x)" into the **concrete, finite dimensional aim** "solve for n + 1 coefficients $c_0, ..., c_n$ "

So we care because...

vector space: useful concept because it helps us

- (1) characterize the function we want to approximate
- (2) decide which subspace to use to build our approximating function

subspace: useful concept because it helps us

(1) limit the infinitely many possible functions to a finite-sized subset