I ILLINOIS

Lecture 18: Finite Element
Methods (1)

Today:

* Finite element methods tor boundary value problems (BVPs)
* This is a spectral method too!
* Butitis based on locally defined functions, not global ones



Where are we up to now?

Last time.

(A) We developed a framework for approximating the solution to a BVP using global spectral
methods

(B) We arrived at a linear system to solve for the coefficients
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(C) Can back out our approximate solution via
n+1

1, (x) = ) cib(x)
j=1
Today. The finite element method (FEM ): a locally-based spectral method

e What is the premise for the finite element method?
 How do we define a subspace that admits locally defined functions?
e How do we pick a basis for that subspace, and how does that affect (1)
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The premise of FEMs

Philosophy behind the finite element method

The finite element method is a spectral method that uses
locally defined functions to create a matrix G with predomi-
nately zero entries to facilitate a fast solution of Gec = b.

Remember that our energy inner
product uses some variant of an

(—\ integral, so using these locally defined
functions will make most of the terms

in G zero.

—> easier system to solve!

And how do we create a basis for that

- 7 subspace?
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Define the subspace using a discretized domain

(b—a)(j—1)

n

X i = a -+ p ] =1 P (S 1 e\We will use a uniform distribution in

this class, but other distributions can
be accommodated fairly

Called an element straightforwardly
a f- b
—_—— —_—
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Called a node
Now that we have a set of points, we can define a function that is piecewise-linear using
these points:

o(x)=a;x+d; x€|x_1,%], i=2,...,n+1

This gives us intuition for the subspace we want! Let’s define our subspace to be the
collection of functions that
(A) Satisfy the BCs

(B) Are piecewise-linear on the set of discrete points:

Vi = {g(x) : g(a) = g(b) = 0 and
g(x) =ajx+d;, fora;,d; € R, x € [x;_1,%;], i=2,...,n+1}

Brain teaser — how would you go about showing this is a subspace?!



A basis for 7

We will show that the functions pictured in slide 3 form a basis for 7%, define them
mathematically, and then use them to build (1) for our FEM

The basis functions for 7'~ are defined as

-

i[x —a—(—2)Ax], ifxe[x_;,x]
bi(x) = 4 —ALx[x —a — iAx], it x € [x;,x;,] i=2,...,n

0, else

-

B = {b,,...,b } forms a basis for 7'~

The functions are clearly linearly independent (see the fig on slide 3 — can’t write any
one of the functions as a linear combo of the others!)

Take any piecewise linear function g(x) defined as a set of lines over
[x1, %1, [%5, x3], ..., [x,,, X,,..1]. Then this g(x) can be written in terms of the basis
functions and its nodal values g(x,), q(x,), ..., q(x,)

n

g(x) = ) qx)by(x)

j=2
OK, so we have our basis functions! How does the matrix system (1) simplify for this basis?
Let’s figure that out for the 1D Poisson problem with zero-Dirichlet BCs!



Simplifying (1) for our FEM basis

Recall that our energy inner product is defined in terms of an integral of derivatives. So let’s
look at the derivative of the basis functions:
( ALx X € [xi—lrxi]

bj(x) = < —Alx X € |xj, Xj41]

\O else

Because these derivatives are only nonzero for a small sub-interval of the domain, the only
terms of row i of G that survive are (b;, b;_|)g, (b;, b)), (b;, b; 1) g

These terms can be computed analytically:
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Similarly, the (f, b,), term reduces to
a+(i+1)Ax

b
(s b))y = J JX)bi(x)dx = [ J)b(x)dx

a a+(i—1)Ax



Rewriting (1) for our FEM basis

-2 1
1 -2
1
Ax
0 0
0 0

Punchline: lots of zeros in that matrix; easier to solve than the generic form of (1)

Punchline: Solve matrix system = get the u;, u,, ..

u(xy), u(x,), ..., u(x,)

) ra+2Ax

[ fby(x)dx
ra+3Ax f(X)b3(X)dX

Ja+Ax

a+(n—2)Ax

a+(n—1)Ax

., U, that approximate

Next time: some coding examples and concept discussions!

Ja+(n)Ax f (X) bn_ 1 (X) dx

Ja+(n+1)Ax f(x)bn(x)dx



