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Methods (1)

Today:

• Finite element methods for boundary value problems (BVPs)
• This is a spectral method too! 
• But it is based on locally defined functions, not global ones
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Where are we up to now?
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Last time. 
(A)  We developed a framework for approximating the solution to a BVP using global spectral 

methods
(B) We arrived at a linear system to solve for the coefficients

Today. The finite element method (FEM): a locally-based spectral method

ua(x) =
n+1

∑
j=1

cjbj(x)

(C) Can back out our approximate solution via

• What is the premise for the finite element method?
• How do we define a subspace that admits locally defined functions?
• How do we pick a basis for that subspace, and how does that affect (1)

⟹

(b1, b1)E (b2, b1)E ⋯ (bn, b1)E (bn+1, b1)E

(b1, b2)E (b2, b2)E ⋯ (bn, b2)E (bn+1, b2)E
⋮ ⋮ ⋯ ⋮ ⋮

(b1, bn)E (b2, bn)E ⋯ (bn, bn)E (bn+1, bn)E

(b1, bn+1)E (b2, bn+1)E ⋯ (bn, bn+1)E (bn+1, bn+1)E

c1
c2
⋮
cn

cn+1

= −

( f, b1)s

( f, b2)s
⋮

( f, bn)s

( f, bn+1)s

(1)

Call this Gc = b

NOTE: starting index at 1, not 0; ending 
index at , not . Either approach is 
ok as long as you are consistent!

n + 1 n



The premise of FEMs
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that is quite cumbersome to work with.
The crux of the finite element method is to get around this chal-

lenge by observing that the energy inner product involves integrals
over the interval [a, b]. Thus, if we can choose a set of basis functions
that are only nonzero for a small portion of the interval [a, b], we can
produce a linear system G that is dominated by zeros, and thus much
easier to work with.

A figure is helpful to illustrate this
concept. We will define a set of “hat”
basis functions later in this lecture that
are depicted in figure 1. Notice that
because they are only nonzero over
a small sub-interval of [a, b], many of
the inner product terms in G would
vanish. For example, the only inner
products that are nonzero involving f2
are (f2, f2)E, (f2, f3)E, and (f3, f2)E.

Figure 1: Five locally defined “hat”
basis functions.

This philosophy driving finite element methods is sufficiently
important that it gets its own orange box:

Philosophy behind the finite element method

The finite element method is a spectral method that uses
locally defined functions to create a matrix G with predomi-
nately zero entries to facilitate a fast solution of Gc = b.

This goal of creating locally defined basis functions within this
spectral method framework will be our focus for today. To facilitate
this goal, we must ask ourselves some questions: what is a suitable
space V that allows as a basis a set of locally defined functions? How
do we define these basis functions mathematically? Finally, how
do we use special V and set of local basis functions to solve the 1D
Poisson problem? We will answer each of these questions in turn in
this week’s typed notes.
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b3

b4

bn−1

bn

Remember that our energy inner 
product uses some variant of an 
integral, so using these locally defined 
functions will make most of the terms 
in  zero. 

 easier system to solve!

G

⟹

How do we define a subspace for 
these functions?

And how do we create a basis for that 
subspace? 



Define the subspace using a discretized domain
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and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference
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We will use a uniform distribution in 
this class, but other distributions can 
be accommodated fairly 
straightforwardly

Now that we have a set of points, we can define a function that is piecewise-linear using 
these points:

a local spectral method: the finite element method for bvps, part 1 3

2 Choosing the space V and the basis functions

Figure 1 presents a tantalizing set of candidate basis functions for us
to use: piecewise linear functions. But there are some complicating
issues that make it unclear whether this choice is appropriate. First,
if we define piecewise functions, how many pieces do we use: 5? 20?
457? Can we systematically describe the number of pieces? Second,
what is the appropriate space that defines these piecewise functions?
Third, do these functions form a basis for the space comprised of
piecewise linear functions?

Regarding the first issue—how to systematically define the num-
ber of pieces we are using to characterize our piecewise functions—
we will break the interval [a, b] up into n subintervals by defining a
grid as x1, x2, . . . , xn, xn+1 (each point xj, j = 1, . . . , n + 1, is called a
node in the finite element method). We define the number of pieces of
the piecewise function in terms of these subintervals: a function g(x)
is called piecewise linear if

g(x) = aix + di x 2 [xi�1, xi], i = 2, . . . , n + 1 (2)

where ai and di are constants defined over each subinterval.

Said differently, g(x) is piecewise linear
if it can be written as a set of lines over
each subinterval.

Notice that the number of intervals n now becomes a parameter
that we can tune. This is crucial, as it gives us a means to define
convergence of finite element methods. Indeed, a natural question is
to ask: will our finite element solution converge to the exact solution
as n is increased?

2.1 The appropriate space

With respect to the second issue—the appropriate space—that is
now clear from our definition of piecewise linear functions enabled
by addressing the second issue. Let us define by V L

n the space of
n-piecewise linear functions that also satisfy the requisite boundary
conditions. That is,

V L
n = {g(x) : g(a) = g(b) = 0 and

g(x) = aix + di, for ai, di 2 R, x 2 [xi�1, xi], i = 2, . . . , n + 1}
(3)

Do not forget that when confronted
with intimidating mathematical no-
tation, the key is to break it down
into manageable words. Equation (3)
says that V L

n is defined by the set of
functions g such that g(x) satisfies the
zero Dirichlet boundary conditions
and can be written as a line over each
sub-interval x 2 [xi�1, xi ].2.2 A basis for V L

n

At last, we turn our attention to the final concern we raised: what is a
good basis for V L

n ? We will show that the functions plotted in figure
1 provide an answer to this question. To see this fact, let q(x) be any
piecewise linear function; i.e., choose any q(x) 2 V L

n . Then q(x) is

This gives us intuition for the subspace we want! Let’s define our subspace to be the 
collection of functions that 
(A)  Satisfy the BCs 
(B) Are piecewise-linear on the set of discrete points:

Called an element

Called a node
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Brain teaser — how would you go about showing this is a subspace?!



A basis for 𝒱L
n
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We will show that the functions pictured in slide 3 form a basis for , define them 
mathematically, and then use them to build (1) for our FEM

𝒱L
n

The basis functions for  are defined as𝒱L
n

 forms a basis for  :ℬ = {b2, …, bn} 𝒱L
n

We exclude , because we will show 
these are taken care of by the BCs

i = 1, n + 1

The functions are clearly linearly independent (see the fig on slide 3 — can’t write any 
one of the functions as a linear combo of the others!)
Take any piecewise linear function  defined as a set of lines over 

. Then this  can be written in terms of the basis 
functions and its nodal values 

q(x)
[x1, x2], [x2, x3], …, [xn, xn+1] q(x)

q(x1), q(x2), …, q(xn)

Notice that

bi(xj) = {1 i = j
0 i ≠ j

q(x) =
n

∑
j=2

q(xj)bj(x)

OK, so we have our basis functions! How does the matrix system (1) simplify for this basis? 
Let’s figure that out for the 1D Poisson problem with zero-Dirichlet BCs!

bi(x) =

1
Δx [x − a − (i − 2)Δx], if x ∈ [xi−1, xi]

− 1
Δx [x − a − iΔx], if x ∈ [xi, xi+1]

0, else

i = 2,…, n



Simplifying (1) for our FEM basis
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Recall that our energy inner product is defined in terms of an integral of derivatives. So let’s 
look at the derivative of the basis functions:

b′￼i(x)

a local spectral method: the finite element method for bvps, part 1 5

method to solve a BVP. The only difference is that we are approximat-
ing our solution on a space comprised of locally defined functions
(V L

n ) rather than globally defined functions (e.g., Pn
0 ). Because we

are still using a spectral method, we may directly use the expression
Gc = b provided by (1).

There are some simplifications that arise to this expression by
virtue of our choice of V L

n and our basis selection for this space. First,
note that the coefficients cj = uj (where uj is an approximation to
u(xj)), by virtue of the property (5) that our basis functions satisfy
which lets us write the approximation to u(x) in terms of its nodal
values. To facilitate our exploration of the

inner products in G, remember that the
energy inner product is defined as

( f , g)E =
Z b

a
f 0(x)g0(x)dx, 8 f , g 2 V

(11)

Second, the terms in G and b simplify considerably. Let us con-
sider the entries of G in detail by evaluating the inner products.
Note that the hat functions defined in (7) have derivatives defined
piecewise as

f0
i(x) =

8
>><

>>:

1
Dx x 2 [xi�1, xi]

� 1
Dx x 2 [xi, xi+1]

0 else

(12)

for i = 2, . . . , n. We will use this expression to evaluate the inner
product in terms in G. From the definition of f0(x) given in (12), it is
clear that the only inner products that will be nonzero are

(fi�1, fi)E, (fi, fi)E, (fi, fi+1)E (13)

for i = 3, . . . , n � 1. We can compute these analytically:

(fi�1, fi)E =
Z a+iDx

a+(i�1)Dx

✓
�1
Dx

◆✓
1

Dx

◆
dx = � 1

Dx

(fi, fi)E =
Z a+(i+1)Dx

a+(i�1)Dx

✓
1

Dx

◆✓
1

Dx

◆
dx =

2
Dx

(fi, fi+1)E =
Z a+(i+1)Dx

a+iDx

✓
�1
Dx

◆✓
1

Dx

◆
dx = � 1

Dx

(14)

Regarding b, we have that

( f , fi) =
Z b

a
f (x)fi(x)dx =

Z a+(i+1)Dx

a+(i�1)Dx
f (x)fi(x)dx (15)

for i = 2, . . . , n.
We can put all of these results together to get the form that the

linear system (1) takes when applying the finite element method

Because these derivatives are only nonzero for a small sub-interval of the domain, the only 
terms of row  of  that survive are i G (bi, bi−1)E, (bi, bi)E, (bi, bi+1)E

These terms can be computed analytically:
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linear system (1) takes when applying the finite element method

(bi, bi−1)E

(bi, bi)E

(bi, bi+1)E

Similarly, the  term reduces to( f, bi)s

( f, bi)s = ∫
b

a
f(x)bi(x)dx = ∫

a+(i+1)Δx

a+(i−1)Δx
f(x)bi(x)dx



Rewriting (1) for our FEM basis
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(with piecewise linear functions). The result is

1
Dx

2

6666664

�2 1 · · · 0 0
1 �2 · · · 0 0
...

... · · ·
...

...
0 0 · · · �2 1
0 0 · · · 1 �2

3

7777775

2

6666664

u2

u3
...

un�1
un

3

7777775
=

2

666666664

R a+2Dx
a f (x)f2(x)dxR a+3Dx
a+Dx f (x)f3(x)dx

...
R a+(n�1)Dx

a+(n�3)Dx f (x)fn�1(x)dx
R a+nDx

a+(n�2)Dx f (x)fn(x)dx

3

777777775

(16)
Solving this matrix system gives us the values of our approximate

solution at the nodes x1, . . . , xn.

∫ a+2Δx
a

f(x)b2(x)dx

∫ a+3Δx
a+Δx

f(x)b3(x)dx
⋮

∫ a+(n)Δx
a+(n−2)Δx

f(x)bn−1(x)dx

∫ a+(n+1)Δx
a+(n−1)Δx

f(x)bn(x)dx

Punchline: lots of zeros in that matrix; easier to solve than the generic form of (1)

Punchline: Solve matrix system  get the  that approximate ⟹ u1, u2, …, un
u(x1), u(x2), …, u(xn)

Next time: some coding examples and concept discussions!


