I ILLINOIS

Lecture 17: Spectral
Methods for BVPs (2)

Today:

* Continue with global spectral methods for boundary value
problems (BVPs)
* Implementation, implementation, implementation

Where are we up to now?

Last time.

(A) We developed a framework for approximating the solution to a BVP using global spectral
methods

(B) We arrived at a linear system to solve for the coefficients

- (bobp bpbp < Gebdr Gube | Te 7 | b0y
(bos b)) b, bpg - (b1, b)g (bys b)) € (f, b1y
= s s s s == (1)
by, b,)g (01,6, -+ (D130,)E (D by i Cn-1 (f, D1
(bob)e (bib)p o (Bopb)p (bub)p | L (b, |
Remember, this equation
(C) Can back out our approximate solution via N— system assumes homogeneous
n Dirichlet BCs!
1, () =) cib(x)
J=0

Today. Implementing these global spectral methods

Consider the specific example of approximating the BVP solution on the space defined
by trigonometric functions

e What does (1) become for this case?
* How do we implement it in code?

Global spectral methods:
Approximating the solution of the 1D Poisson problem with zero Dirichlet BCs

Continue to focus on the 1D Poisson problem.

du

W:f’ x € la,b] ‘—\ (2)

Could extend the ensuing derivation to a more general BVP

u(a) =pa, u(b) =i, (3)

0 0

Could consider other BCs, this just makes the derivation a little cleaner

We need a subspace and associated basis

Let’s choose a space we call 77, defined as the collection of all trigonometric functions
of degree n or less that satisfy the zero-BCs

A basis for this space is

{Sin (ﬂéx_—aa)> sin <27tb(x_—aa)> . sin (nnb(x__a a)) }

L/ Notice we don’t need the cosine terms because they don’t satisfy the BCs!

So what does the matrix in (1) become for this choice of basis?

Figuring out the matrix in (1) for our choice of basis

We have that
(sin (jﬂlgx_—aa)) sin (kﬂb(x_—aa)>)E _ /ab G (]'ﬁéx_—aa)> sin’ (kﬂb(x_—aa)) dx
() o)

0 i £k
J 7t j:k

So that (1) becomes / Just convention!
oo o [(),

12 0 0 0 T)S
L0 22 0 0 2) ('Si“ <2nb(x7)>)s
Z(b —El) 00 ZT—12 0 Coo sin (n—1)m(x—a)
() (’ (b—a))
oo ol [,

And in python...

a=2
5 4l
= (b-a)

ne grie r pret Lot

Xxx = np.linspace(a,b,1000)

alpha = uex(a, a, b)
beta = uex(b, a, b)

nv = np.array([10, 20, 40, 80])

err = np.zeros([len(nv),1])
fig, ax = plt.subplots(len(nv[range(3)]), 1, sharex=True, squeeze=False)

for j in range(len(nv)):
n =nvl[jl

lve for
c = np.zeros([n,1])

"ix 1s diagonal s

for jj in range(n-1):

bj = np.trapz(f(xx,a,b) * np.sin((jj+1)*np.pik(xx-a)/ (b-a)), x=xx)

nc lization
dj = —2x(b-a)/((jj+1)**2%np.pi**2);
cljjl = bjxdj;

u=0;
for kk in range(n-1):
u=u + clkk]l * np.sin((kk+1)*np.pix(xx-a)/ (b-a));

L e |
err[jl = LA.norm(u - uex(xx, a,b))/ LA.norm(uex(xx,a,b))

k/GoogleDrive/My Drive/Me/UIUC/Classes/AE 370/Me/SP2021/Content/Week 10/Lectures/Monday/trig_spectral_demo.py 85:5

u(

A

u

//
x)

gAY

[\

V

20

2.5

