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Methods for BVPs (2)

Today:

• Continue with global spectral methods for boundary value 
problems (BVPs)
• Implementation, implementation, implementation
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Where are we up to now?
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Last time. 
(A)  We developed a framework for approximating the solution to a BVP using global spectral 

methods
(B) We arrived at a linear system to solve for the coefficients

Today. Implementing these global spectral methods

ua(x) =
n

∑
j=0

cjbj(x)

(C) Can back out our approximate solution via

Consider the specific example of approximating the BVP solution on the space defined 
by trigonometric functions
• What does (1) become for this case?
• How do we implement it in code?

Remember, this equation 
system assumes homogeneous 
Dirichlet BCs!

(1)⟹
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⋮
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Global spectral methods:
Approximating the solution of the 1D Poisson problem with zero Dirichlet BCs
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Continue to focus on the 1D Poisson problem.

lecture 15 finite difference methods for boundary value problems 2

and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference

(2)

Lecture 15
Finite difference methods for boundary value prob-
lems

In the last several lectures, we considered finite difference methods
for initial value problems. We will transition in this lecture to nu-
merical methods for boundary value problems (BVPs). We will focus
this week on finite difference methods for BVPs. Just as we saw for
IVPs, finite difference methods for BVPS are based on local interpo-
lation. This connection makes them a natural segue from our IVP
discussion. Next week, we will consider a different class of numerical
methods for BVPs referred to as spectral methods. By contrast with
the interpolation-based finite difference method, spectral methods are
based on least-squares approximation of the solution to the BVP.

The distinction between finite differ-
ence methods and spectral methods is
analogous to the difference between
interpolation and least squares approxi-
mation for functions, which we covered
earlier this semester.

1 Boundary value problems

Before diving into finite difference methods for BVPs, we first take a
moment to review what defines this type of differential equation in
the first place. The BVPs we will consider are of the form

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (1)

for real constants a and b, g, boundary points a and b (a < b), and
some prescribed forcing f (x). BVPs are fully defined by augmenting
the differential equation (1) with boundary conditions. For now, we will
consider the so-called Dirichlet boundary conditions

Can you write down another set of
admissable boundary conditions for
this 1D problem?

u(a) = ua, u(b) = ub (2)

Notice the definitional distinction from IVPs: in this case the
prescribed conditions for u(x) are not at an initial instance in time,
but instead enforce that u satisfy conditions at the boundary points
x = a and x = b. Let us make this distinction clear:

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

It is precisely this distinction from IVPs
that makes BVPs amenable to solution
strategies besides finite difference
methods, which are based on local
interpolation. While finite difference
methods work well for these types of
problems, the presence of boundary
conditions that define the solution
globally makes global approaches
suitable candidates for BVPs. By
contrast, the dynamical evolution of
an IVP from an initial condition makes
the local-interpolation-based finite
difference method by far the most
common numerical framework for IVPs.

1.1 The Poisson problem

In the next two lectures, we will consider the specific case of (1)
where a = 1 and b = g = 0. This is called the 1D Poisson problem,

(3)
0 0

Could consider other BCs, this just makes the derivation a little cleaner

Could extend the ensuing derivation to a more general BVP 

We need a subspace and associated basis

Let’s choose a space we call  , defined as the collection of all trigonometric functions 
of degree  or less that satisfy the zero-BCs

𝒯n
0

n

A basis for this space is 

global spectral methods for bvps part 2: some examples 2

basis functions and can be evaluated analytically using symbolic

toolboxes. For the righthand side term, these analytical computations

may not be tractable depending on f . But that is not a problem; we

can handle these terms using our favorite quadrature rule!

2 Global spectral methods with trigonometric functions

Now we use a spectral method derived from trigonometric functions

to solve the 1D Poisson equation. Just as we did for polynomials, we

must ensure that our space satisfies the zero boundary conditions; we

are therefore in pursuit of a space T n
0

(and not the space T n
that we

used for trigonometric interpolation).

What is a basis for this space? Well recall that a basis for the larger

space T n
was comprised of sine and cosine functions that were

integer periodic on [a, b]. However, each of these cosine functions is

nonzero at x = a and x = b, and consequently does not satisfy the

boundary conditions. We thus construct our basis for T n
0

using sine

functions. In particular, they must be shifted to be zero at x = a, so

that the basis is

(
sin

✓
p(x � a)

b � a

◆
, sin

✓
2p(x � a)

b � a

◆
, . . . , sin

✓
np(x � a)

b � a

◆)
(3)

The indices i1 and in are therefore i1 = 1, in = n.

Using our basis for T n
0

, we can write our approximation û as

u(x) ⇡ û(x) =
n

Â
k=1

ck sin

✓
kp(x � a)

b � a

◆
(4)

We again use (17) from the last lecture to solve for the unknown

coefficients. Before, writing out the matrix system, however, let us

notice something beautiful about the sine basis. Taking the energy

inner product between two of the sine basis functions gives

✓
sin

✓
jp(x � a)

b � a

◆
, sin

✓
kp(x � a)

b � a

◆◆

E

=
Z b

a
sin

0
✓

jp(x � a)
b � a

◆
sin

0
✓

kp(x � a)
b � a

◆
dx

=
jkp2

(b � a)2

Z b

a
cos

✓
jp(x � a)

b � a

◆
cos

✓
kp(x � a)

b � a

◆

=

8
<

:
0 j 6= k

j2p2

2(b�a) j = k

(5)

That is, the sine basis is orthogonal with

respect to the energy inner product.

Because of this property of the sine basis functions, the system (17)

Notice we don’t need the cosine terms because they don’t satisfy the BCs!

So what does the matrix in (1) become for this choice of basis?



Figuring out the matrix in (1) for our choice of basis
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We have that
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was comprised of sine and cosine functions that were

integer periodic on [a, b]. However, each of these cosine functions is

nonzero at x = a and x = b, and consequently does not satisfy the

boundary conditions. We thus construct our basis for T n
0

using sine
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The indices i1 and in are therefore i1 = 1, in = n.

Using our basis for T n
0

, we can write our approximation û as

u(x) ⇡ û(x) =
n

Â
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✓
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b � a

◆
(4)

We again use (17) from the last lecture to solve for the unknown

coefficients. Before, writing out the matrix system, however, let us

notice something beautiful about the sine basis. Taking the energy

inner product between two of the sine basis functions gives
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Z b
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jp(x � a)
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◆
sin

0
✓

kp(x � a)
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a
cos

✓
jp(x � a)

b � a

◆
cos

✓
kp(x � a)

b � a

◆
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8
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That is, the sine basis is orthogonal with

respect to the energy inner product.

Because of this property of the sine basis functions, the system (17)
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basis functions and can be evaluated analytically using symbolic

toolboxes. For the righthand side term, these analytical computations

may not be tractable depending on f . But that is not a problem; we

can handle these terms using our favorite quadrature rule!

2 Global spectral methods with trigonometric functions

Now we use a spectral method derived from trigonometric functions

to solve the 1D Poisson equation. Just as we did for polynomials, we

must ensure that our space satisfies the zero boundary conditions; we

are therefore in pursuit of a space T n
0

(and not the space T n
that we

used for trigonometric interpolation).

What is a basis for this space? Well recall that a basis for the larger

space T n
was comprised of sine and cosine functions that were

integer periodic on [a, b]. However, each of these cosine functions is

nonzero at x = a and x = b, and consequently does not satisfy the

boundary conditions. We thus construct our basis for T n
0

using sine

functions. In particular, they must be shifted to be zero at x = a, so

that the basis is

(
sin

✓
p(x � a)

b � a

◆
, sin

✓
2p(x � a)

b � a

◆
, . . . , sin

✓
np(x � a)

b � a

◆)
(3)

The indices i1 and in are therefore i1 = 1, in = n.

Using our basis for T n
0
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Because of this property of the sine basis functions, the system (17)
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from the last lecture for obtaining the coefficients simplifies to

� p2

2(b � a)

2

6666664

1
2

0 · · · 0 0

0 2
2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · (n � 1)2
0

0 0 · · · 0 n2

3

7777775

2

6666664

c1

c2

.

.

.

cn�1

cn

3

7777775
=

2

6666666664

⇣
f , sin

⇣
p(x�a)

b�a

⌘⌘

s⇣
f , sin

⇣
2p(x�a)

b�a

⌘⌘

s
.
.
.⇣

f , sin

⇣
(n�1)p(x�a)

b�a

⌘⌘

s⇣
f , sin

⇣
np(x�a)

b�a

⌘⌘

s

3

7777777775

(6)

We can therefore solve for the coefficients directly as

cj = �2(b � a)
j2p2

✓
f (x), sin

✓
jp(x � a)

b � a

◆◆

s
, j = 1, . . . , n (7)

Just as we observed for the spectral method involving global

polynomials, (7) involves the standard inner product that we can

evaluate using one of the quadrature rules we developed earlier in

class. A trapezoidal rule is one option, but approaches based on

global interpolation will enable greater accuracy with a much smaller

number of points.

So that (1) becomes
Note: we switched starting index to 1 to match the indexing for the sine functions.

Just convention!



And in python…
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