
Global spectral methods for BVPs
Part 2: Some examples

In the last lecture, we developed a framework for approximating the
solution to a BVP using a global spectral method. That is, we repre-
sented the solution as a linear combination of global basis functions,
and developed an equation for the coefficients by recognizing that
the optimal approximation satisfies the very special property that it
produces an error that is orthogonal to the approximation subspace.

In this lecture, we will apply this framework to a few examples.

1 Global spectral methods with polynomials

In this section, we consider using globally defined polynomials to
develop a spectral method for the 1D Poisson equation. That is, we
want an approximation space defined by nth order polynomials. This
suggests that we use our handy Lagrange polynomials {L1, . . . , Ln+1}.
But we have one more constraint: this approximation space must
automatically satisfy the boundary conditions. Said differently, we
want to approximate û onto the space Pn

0 , not Pn.

Notice the distinction in notation:
whereas Pn is the space defined by any
and all degree-n polynomials, Pn

0 is de-
fined by any degree-n polynomial that
satisfies the zero Dirichlet boundary
conditions at x = a and x = b.

How do we modify our basis functions to incorporate this bound-
ary condition? The answer to this question comes from the observa-
tion that, by construction, Li(xj) is 1 if x = j and 0 otherwise. Thus,
{L2, . . . , Ln} are all zero by default at x = a and x = b. By contrast, L1

is nonzero at x = a and Ln is nonzero at x = b, and will never satisfy
the boundary conditions. So a suitable basis for Pn

0 is {L2, . . . , Ln}.
The indices i1 and in are therefore i1 = 2, in = n.

It may seem odd that there are two
fewer basis functions associated with
Pn

0 compared with Pn. In fact, there
is a very good reason for this: the
two boundary conditions remove two
degrees of freedom on the solution
(it restricts what values u can take on
at two points). We are therefore only
allowed to use n-1 basis functions.

Now that we have picked our boundary conditions, we can write
our approximate solution û as

u(x) ≈ û(x) =
n

∑
k=2

ckLk(x) (1)

Thus, using this basis in (17) from the last lecture, we have an
equation that we can solve for our coefficients:

(L2, L2)E (L3, L2)E · · · (Ln−1, L2)E (Ln, L2)E

(L2, L3)E (L3, L3)E · · · (Ln−1, L3)E (Ln, L3)E
...

... · · ·
...

...
(L2, Ln−1)E (L3, Ln−1)E · · · (Ln−1, Ln−1)E (Ln, Ln−1)E

(L2, Ln)E (L3, Ln)E · · · (Ln−1, Ln)E (Ln, Ln)E




c2

c3
...

cn−1

cn

 =


−( f , L2)s

−( f , L3)s
...

−( f , Ln−1)s

−( f , Ln)s


(2)

To solve (2), we need a way to evaluate the energy inner products
Note that, just as we saw in least
squares function approximation for the
standard inner product, the Lagrange
polynomials are not orthogonal with
respect to the energy inner product.
But if we wanted to be fancy, we
could construct a set of orthogonal
polynomials using the Gram-Schmidt
orthogonalization process, as you did in
a previous homework. This would have
the huge benefit of making the matrix in
the linear system 2 the identity matrix,
which makes the linear system trivially
solvable.

in the matrix and the standard inner products in the righthand side
term. How do we do this? Well the matrix terms involve polynomial
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basis functions and can be evaluated analytically using symbolic
toolboxes. For the righthand side term, these analytical computations
may not be tractable depending on f . But that is not a problem; we
can handle these terms using our favorite quadrature rule!

2 Global spectral methods with trigonometric functions

Now we use a spectral method derived from trigonometric functions
to solve the 1D Poisson equation. Just as we did for polynomials, we
must ensure that our space satisfies the zero boundary conditions; we
are therefore in pursuit of a space T n

0 (and not the space T n that we
used for trigonometric interpolation).

What is a basis for this space? Well recall that a basis for the larger
space T n was comprised of sine and cosine functions that were
integer periodic on [a, b]. However, each of these cosine functions is
nonzero at x = a and x = b, and consequently does not satisfy the
boundary conditions. We thus construct our basis for T n

0 using sine
functions. In particular, they must be shifted to be zero at x = a, so
that the basis is{

sin
(

π(x− a)
b− a

)
, sin

(
2π(x− a)

b− a

)
, . . . , sin

(
nπ(x− a)

b− a

)}
(3)

The indices i1 and in are therefore i1 = 1, in = n.
Using our basis for T n

0 , we can write our approximation û as

u(x) ≈ û(x) =
n

∑
k=1

ck sin
(

kπ(x− a)
b− a

)
(4)

We again use (17) from the last lecture to solve for the unknown
coefficients. Before, writing out the matrix system, however, let us
notice something beautiful about the sine basis. Taking the energy
inner product between two of the sine basis functions gives(

sin
(

jπ(x− a)
b− a

)
, sin

(
kπ(x− a)

b− a

))
E

=
∫ b

a
sin′

(
jπ(x− a)

b− a

)
sin′

(
kπ(x− a)

b− a

)
dx

=
jkπ2

(b− a)2

∫ b

a
cos

(
jπ(x− a)

b− a

)
cos

(
kπ(x− a)

b− a

)

=

0 j 6= k
j2π2

2(b−a) j = k

(5)

That is, the sine basis is orthogonal with
respect to the energy inner product.

Because of this property of the sine basis functions, the system (17)
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from the last lecture for obtaining the coefficients simplifies to

− π2

2(b− a)


12 0 · · · 0 0
0 22 · · · 0 0
...

...
...

...
...

0 0 · · · (n− 1)2 0
0 0 · · · 0 n2




c1

c2
...

cn−1

cn

 =



(
f , sin

(
π(x−a)

b−a

))
s(

f , sin
(

2π(x−a)
b−a

))
s

...(
f , sin

(
(n−1)π(x−a)

b−a

))
s(

f , sin
(

nπ(x−a)
b−a

))
s


(6)

We can therefore solve for the coefficients directly as

cj = −
2(b− a)

j2π2

(
f (x), sin

(
jπ(x− a)

b− a

))
s

, j = 1, . . . , n (7)

Just as we observed for the spectral method involving global
polynomials, (7) involves the standard inner product that we can
evaluate using one of the quadrature rules we developed earlier in
class. A trapezoidal rule is one option, but approaches based on
global interpolation will enable greater accuracy with a much smaller
number of points.
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