I ILLINOIS

Lecture 16: Spectral
Methods for BVPs (1)

Today:

* Continue with boundary value problems (BVPs)
* This time: don’t use finite difference methods.
* Use global spectral methods
* Analog of least squares function approximation!



Where are we up to now?

Previously.

(A) We learned how to approximate the solution of a BVP using an FD method

(B) We learned how to predict the error of that FD method using truncation error and
stability

Today. Solutions to BVPs using global spectral methods

Philosophy behind spectral methods

Whereas finite difference methods are based on locally interpo-
lating the differential equation, spectral methods minimize the
least-squares error in the numerical solution.

This approach is an analog of least squares function approximation (with a prescribed
function)!

Because of this strong connection, we will review least-squares function approximation
and leverage this to develop global spectral methods



Reminder: least squares function approximation

Goal: find a function, f (x), that approximates a given function, f(x), accurately on x € [a, b]

(A)Pick a subspace that we want to approximate onto (e.g., 9"[a, b] or T "[a, b))

(B) Write f (x), as a linear combination of the basis functions in terms of unknown
n
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(C) Need n equations to solve for the n unknown coefficients. Seek to minimize the

coefficients

overall error. That is, we will look for an f,(x) that satisfies
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(D) Notice that the optimal f,, satisfies

(f=f,0)=0, i=0,...,n (3)
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(D)Solve for the coefficients => we have our f,



Global spectral methods for BVPs:
A least squares method

Goal: find a function, u (x), that approximates the BVP solution u(x) accurately on x € [a, b]

(A)Pick a subspace that we want to approximate onto (e.g., 9"[a, b] or T "[a, b))

(B) Write u (x), as a linear combination of the basis functions in terms of unknown
n

U, (x) = Z ¢;ibi(x) (5)
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(C) Need n equations to solve for the n unknown coefficients. Seek to minimize the

coefficients

overall error. That is, we will look for an u (x) that satisfies

- 2
min | |u—u ||
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(D) Notice that the optimal u,, satisfies
(wu—u,b)=0, i=0,.,n (7)
Amazingly, all the steps to here are the same!

But now we’ve hit a road block, because we don’t know u

Before, we knew f so this wasn’t an issue

We will get around this with a specially chosen inner product



Global spectral methods:
using the energy inner product

We will make progress by using the energy inner product for (7). For the 1D Poisson problem
we are considering, this energy IP is defined as (
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Looking at the induced norm tells us why we call this the energy IP

1gllE=1/(¢8)E = \//ab (¢'(x))* dx

Remember: the 1D Poisson problem is a steady state
heat equation. This is a measure of the heat flux

u
density, —k I integrated across the domain.
X

Note. This energy IP is specific to the 1D Poisson equation, and has to be changed for
different BVDPs!



Global spectral methods:
Using the energy inner product to solve for the c;

J
Let’s use our energy inner product for (7):
(u—u,b)y=0, 1=0,...,n (7)

j=0 L

We don’t know u, but look what happens
when we expand the energy IP:

b
(u, bi)E = J u'(x)b;(x)dx
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— [M’(X)bi(X)]Z — [ M/,(X)bi(X)dX Integration by parts, then assume the BVP has zero Dirichlet BCs,
a and that the basis functions by(x) preserve these BCs. Can handle
b \ the more general case with some tedium...
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Note that this is also an IP. Let’s call it (f, D;),

We can use (9) in (8) to write out a linear system for the coefficients!

n Does not include u!
Gj (bj»bi) =—(f,b)y, 1=0,....n «—__—
E

J=0



Global spectral methods:

Get the c; = approximate u
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