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Methods for BVPs (1)

Today:

• Continue with boundary value problems (BVPs)
• This time: don’t use finite difference methods.
• Use global spectral methods

• Analog of least squares function approximation!
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Where are we up to now?
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Previously. 
(A)  We learned how to approximate the solution of a BVP using an FD method
(B) We learned how to predict the error of that FD method using truncation error and 

stability

Today. Solutions to BVPs using global spectral methods

Global spectral methods for BVPs
Part 1: an overview

We will transition from finite difference methods for BVPs to a new
class of methods, called spectral methods. Here is the philosophical
difference between these two categories of methods:

Philosophy behind spectral methods

Whereas finite difference methods are based on locally interpo-
lating the differential equation, spectral methods minimize the
least-squares error in the numerical solution.

Said differently, finite difference meth-
ods are analogous to interpolation of
functions, and spectral methods are
analogous to least squares approxima-
tion of functions.

As with least squares approximation of functions, there are both
global and local variants. We will focus this week on global spectral
methods, which use basis functions defined over the entire interval.
Next week, we will consider local spectral methods, though these are
more famously referred to as the finite element method.

As with finite difference methods, we will develop spectral meth-
ods for the 1D Poisson equation

d2u
dx2 = f , x 2 [a, b] (1)

u(a) = ua, u(b) = ub (2)

In this class, we will focus on the specific case where ua = ub = 0.
Nonzero boundary conditions can be accounted for in a relatively
straightforward manner, but doing so would make our derivation
more cumbersome and might make us lose the forest for the trees.

Just as in our study of finite differ-
ence methods for BVPs, the use of the
Poisson problem is for simplicity of
presentation, but is not prescriptive.
Straightforward changes can be incorpo-
rated to develop spectral methods for
the more general BVP

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (3)

Also note that we continue to close
our BVP using Dirichlet boundary
conditions. Other conditions can be
accommodated, though this would
require some detailed differences in the
method.

1 The general formulation for spectral methods

Since spectral methods minimize the least-squares error in the numer-
ical solution, our aim is to find the û(x) that approximates the true
solution u(x) and satisfies the condition

û = min
ũ2V

||u � ũ|| (4)

Remarkably, we will use exactly the same steps as in least-squares
function approximation to approximate our solution to the 1D Pois-
son equation:

We will give some example spaces
below that satisfy the required bound-
ary conditions, and will talk about
appropriate bases for these example
spaces.

1. Pick a space, V , on which to approximate the exact solution.
Notice that we want our approximate solution û to satisfy the
boundary conditions, so we must be sure to pick a space V that
satisfies the zero Dirichlet boundary conditions.

This approach is an analog of least squares function approximation (with a prescribed 
function)!

Because of this strong connection, we will review least-squares function approximation 
and leverage this to develop global spectral methods



Reminder: least squares function approximation
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Goal: find a function, , that approximates a given function,  , accurately on fa(x) f(x) x ∈ [a, b]

(A)Pick a subspace that we want to approximate onto (e.g.,  or )𝒫n[a, b] 𝒯n[a, b]

(B) Write , as a linear combination of the basis functions in terms of unknown 
coefficients

fa(x)

fa(x) =
n

∑
j=0

cjbj(x)

min
fa∈𝒱

| | f − fa | |2

(1)

(C) Need  equations to solve for the  unknown coefficients. Seek to minimize the 
overall error. That is, we will look for an  that satisfies

n n
fa(x)

(2)

(D)Notice that the optimal  satisfies fa
( f − fa, bi) = 0, i = 0,…, n (3)

⟹

(b0, b0) (b1, b0) ⋯ (bn−1, b0) (bn, b0)
(b0, b1) (b1, b1) ⋯ (bn−1, b1) (bn, b1)

⋮ ⋮ ⋯ ⋮ ⋮
(b0, bn−1) (b1, bn−1) ⋯ (bn−1, bn−1) (bn, bn−1)
(b0, bn) (b1, bn) ⋯ (bn−1, bn) (bn, bn)

c0
c1
⋮

cn−1
cn

=

( f, b0)
( f, b1)

⋮
( f, bn−1)
( f, bn)

(D)Solve for the coefficients  we have our  ⟹ fa

(4)



Global spectral methods for BVPs:
A least squares method
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Goal: find a function, , that approximates the BVP solution  accurately on ua(x) u(x) x ∈ [a, b]

(A)Pick a subspace that we want to approximate onto (e.g.,  or )𝒫n[a, b] 𝒯n[a, b]

(B) Write , as a linear combination of the basis functions in terms of unknown 
coefficients

ua(x)

ua(x) =
n

∑
j=0

cjbj(x)

min
ua∈𝒱

| |u − ua | |2

(5)

(C) Need  equations to solve for the  unknown coefficients. Seek to minimize the 
overall error. That is, we will look for an  that satisfies

n n
ua(x)

(6)

(D)Notice that the optimal  satisfies ua

(u − ua, bi) = 0, i = 0,…, n (7)

Amazingly, all the steps to here are the same!

But now we’ve hit a road block, because we don’t know u

Before, we knew  so this wasn’t an issuef

We will get around this with a specially chosen inner product



Global spectral methods:
using the energy inner product
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We will make progress by using the energy inner product for (7). For the 1D Poisson problem 
we are considering, this energy IP is defined as

global spectral methods for bvps part 1: an overview 2

2. Pick a basis for that space and represent the approximate solu-
tion as a linear combination of the basis functions (where the
coefficients are unknown)

u(x) ⇡ û(x) =
in
Â

k=i1

ckfk(x) (5)

where i1 and in are the starting and ending index, respectively, for
our basis of choice; e.g, for the Lagrange polynomials {L1, . . . , Ln+1},
i1 = 1 and in = n + 1.

3. Choose an inner product (and thus, a norm).

4. Use the fact that the minimizer û(x) of (4) satisfies the orthogonal-
ity condition (u � û, q) = 0 for all q 2 V . In particular, since it holds
for any q 2 V it must hold each basis function fj(x) 2 V :

(u � û, fj) = 0, j = i1, . . . , in (6)

5. Plug the expression (5) for û into (6) to solve for the coefficients
{ci1 , . . . , cin}

Take a moment to appreciate this: be-
cause (4) is identical to the least squares
formulation for approximating func-
tions, we can use exactly the same steps
to solve BVPs as in performing least
squares approximation of functions!

The question that remains is: what is the appropriate inner prod-
uct to use?

2 Choosing the right inner product

The inner product that we will use is defined as

( f , g)E =
Z b

a
f 0(x)g0(x)dx, 8 f , g 2 V (7) Check that this is indeed an inner

product by verifying that it satisfies the
three properties of an inner product we
defined in week 1.The subscript E is used to denote the fact that this is referred to as

the energy inner product. Why is this the case? Notice that the induced
energy norm is

||g||E =
q
(g, g)E =

s
Z b

a
(g0(x))2 dx (8)

How is ||g||E related to energy? Remember that the Poisson problem
(1) is the steady-state heat equation. In this context, the derivative of
a temperature field is the heat flux density (i.e., the amount of energy
that flows through an object per unit area per unit time). Thus, ||g||E
represents the integration of the energy density associated with a
temperature field g across the entire domain.

Why are we using the energy inner product (and induced energy
norm) to derive our spectral method? We will answer this question
next.

Looking at the induced norm tells us why we call this the energy IP
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ity condition (u � û, q) = 0 for all q 2 V . In particular, since it holds
for any q 2 V it must hold each basis function fj(x) 2 V :
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Remember: the 1D Poisson problem is a steady state 
heat equation. This is a measure of the heat flux 

density, , integrated across the domain.−k
du
dx

Note. This energy IP is specific to the 1D Poisson equation, and has to be changed for 
different BVPs! 

d2u
dx2

= f, x ∈ [a, b]



Global spectral methods:
Using the energy inner product to solve for the  cj
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Let’s use our energy inner product for (7):

n

∑
j=0

cj (bj, bi)E
= (u, bi)E, i = 0,…, n

We don’t know , but look what happens 
when we expand the energy IP:

u

(u, bi)E
= ∫

b

a
u′￼(x)b′￼i(x)dx

= [u′￼(x)bi(x)]b
a − ∫

b

a
u′￼′￼(x)bi(x)dx

= − ∫
b

a
u′￼′￼(x)bi(x)dx

= − ∫
b

a
f(x)bi(x)dx

(8)

(9)

We can use (9) in (8) to write out a linear system for the coefficients!
n

∑
j=0

cj (bj, bi)E
= − ( f, bi)s, i = 0,…, n

Note that this is also an IP. Let’s call it ( f, bi)s

Integration by parts, then assume the BVP has zero Dirichlet BCs, 
and that the basis functions  preserve these BCs. Can handle 
the more general case with some tedium…

bi(x)

(u − ua, bi)E = 0, i = 0,…, n (7)

Does not include !u



Global spectral methods:
Get the approximate cj ⟹ u
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⟹

(b0, b0)E (b1, b0)E ⋯ (bn−1, b0)E (bn, b0)E

(b0, b1)E (b1, b1)E ⋯ (bn−1, b1)E (bn, b1)E
⋮ ⋮ ⋯ ⋮ ⋮

(b0, bn−1)E (b1, bn−1)E ⋯ (bn−1, bn−1)E (bn, bn−1)E

(b0, bn)E (b1, bn)E ⋯ (bn−1, bn)E (bn, bn)E

c0
c1
⋮

cn−1
cn

= −

( f, b0)s

( f, b1)s
⋮

( f, bn−1)s

( f, bn)s


