
Global spectral methods for BVPs
Part 1: an overview

We will transition from finite difference methods for BVPs to a new
class of methods, called spectral methods. Here is the philosophical
difference between these two categories of methods:

Philosophy behind spectral methods

Whereas finite difference methods are based on locally interpo-
lating the differential equation, spectral methods minimize the
least-squares error in the numerical solution.

Said differently, finite difference meth-
ods are analogous to interpolation of
functions, and spectral methods are
analogous to least squares approxima-
tion of functions.

As with least squares approximation of functions, there are both
global and local variants. We will focus this week on global spectral
methods, which use basis functions defined over the entire interval.
Next week, we will consider local spectral methods, though these are
more famously referred to as the finite element method.

As with finite difference methods, we will develop spectral meth-
ods for the 1D Poisson equation

d2u
dx2 = f , x ∈ [a, b] (1)

u(a) = ua, u(b) = ub (2)

In this class, we will focus on the specific case where ua = ub = 0.
Nonzero boundary conditions can be accounted for in a relatively
straightforward manner, but doing so would make our derivation
more cumbersome and might make us lose the forest for the trees.

Just as in our study of finite differ-
ence methods for BVPs, the use of the
Poisson problem is for simplicity of
presentation, but is not prescriptive.
Straightforward changes can be incorpo-
rated to develop spectral methods for
the more general BVP

α
d2u
dx2 + β

du
dx

+ γu = f , x ∈ [a, b] (3)

Also note that we continue to close
our BVP using Dirichlet boundary
conditions. Other conditions can be
accommodated, though this would
require some detailed differences in the
method.

1 The general formulation for spectral methods

Since spectral methods minimize the least-squares error in the numer-
ical solution, our aim is to find the û(x) that approximates the true
solution u(x) and satisfies the condition

û = min
ũ∈V
||u− ũ|| (4)

Remarkably, we will use exactly the same steps as in least-squares
function approximation to approximate our solution to the 1D Pois-
son equation:

We will give some example spaces
below that satisfy the required bound-
ary conditions, and will talk about
appropriate bases for these example
spaces.

1. Pick a space, V , on which to approximate the exact solution.
Notice that we want our approximate solution û to satisfy the
boundary conditions, so we must be sure to pick a space V that
satisfies the zero Dirichlet boundary conditions.
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2. Pick a basis for that space and represent the approximate solu-
tion as a linear combination of the basis functions (where the
coefficients are unknown)

u(x) ≈ û(x) =
in

∑
k=i1

ckφk(x) (5)

where i1 and in are the starting and ending index, respectively, for
our basis of choice; e.g, for the Lagrange polynomials {L1, . . . , Ln+1},
i1 = 1 and in = n + 1.

3. Choose an inner product (and thus, a norm).

4. Use the fact that the minimizer û(x) of (4) satisfies the orthogonal-
ity condition (u− û, q) = 0 for all q ∈ V . In particular, since it holds
for any q ∈ V it must hold each basis function φj(x) ∈ V :

(u− û, φj) = 0, j = i1, . . . , in (6)

5. Plug the expression (5) for û into (6) to solve for the coefficients
{ci1 , . . . , cin}

Take a moment to appreciate this: be-
cause (4) is identical to the least squares
formulation for approximating func-
tions, we can use exactly the same steps
to solve BVPs as in performing least
squares approximation of functions!

The question that remains is: what is the appropriate inner prod-
uct to use?

2 Choosing the right inner product

The inner product that we will use is defined as

( f , g)E =
∫ b

a
f ′(x)g′(x)dx, ∀ f , g ∈ V (7) Check that this is indeed an inner

product by verifying that it satisfies the
three properties of an inner product we
defined in week 1.The subscript E is used to denote the fact that this is referred to as

the energy inner product. Why is this the case? Notice that the induced
energy norm is

||g||E =
√
(g, g)E =

√∫ b

a
(g′(x))2 dx (8)

How is ||g||E related to energy? Remember that the Poisson problem
(1) is the steady-state heat equation. In this context, the derivative of
a temperature field is the heat flux density (i.e., the amount of energy
that flows through an object per unit area per unit time). Thus, ||g||E
represents the integration of the energy density associated with a
temperature field g across the entire domain.

Why are we using the energy inner product (and induced energy
norm) to derive our spectral method? We will answer this question
next.
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3 Using the energy inner product to derive our equations

Plug the expression (5) for û into (6) and using the energy inner
product gives(

u−
in

∑
k=i1

ckφk, φj

)
E

= 0, j = i1, . . . , in (9)

=⇒
in

∑
k=i1

ck
(
φk, φj

)
E =

(
u, φj

)
E , j = i1, . . . , in (10)

Now here is where the energy inner product comes in handy. Let’s
probe the righthand side term:(

u, φj
)

E =
∫ b

a
u′(x)φ′j(x)dx (11)

= [u′(x)φj(x)]ba −
∫ b

a
u′′(x)φj(x)dx [Integrate by parts]

(12)

= −
∫ b

a
u′′(x)φj(x)dx

[
φj ∈ V so it satisfies the BCs

]
(13)

= −
∫ b

a
f (x)φj(x)dx [Follows from (1)] (14)

Thus, we can write (10) as

Notice the magic behind what we have
done in this sequence of equations: we
wrote the pesky (u, φj) term, which
we know nothing about because we
do not know the solution u, in terms
of an inner product involving the
source term f that we do know. This
procedure is at the heart of spectral
methods. The specific choice of energy
product is problem dependent, but
always revolves around this principle of
enabling us to rewrite the (u, φj) term
in terms of a quantity involving f .

in

∑
k=i1

ck
(
φk, φj

)
E = −

(
f , φj

)
s , j = i1, . . . , in (15)

We can express (15) in matrix form as

Note that ( f , φj)s denotes use of the
standard inner product defined as

( f , φj)s =
∫ b

a
f (x)φj(x)dx (16)


(φi1 , φi1)E (φi2 , φi1)E · · · (φin−1 , φi1)E (φin , φi1)E

(φi1 , φi2)E (φi2 , φi2)E · · · (φin−1 , φi2)E (φin , φi2)E
...

... · · ·
...

...
(φi1 , φin−1)E (φi2 , φin−1)E · · · (φin−1 , φin−1)E (φin , φin−1)E

(φi1 , φin)E (φi2 , φin)E · · · (φin−1 , φin)E (φin , φin)E




ci1
ci2
...

cin−1

cin

 =


−( f , φi1)s

−( f , φi2)s
...

−( f , φin−1)s

−( f , φin)s


(17)

One important observation before we move on: where are the bound-
ary conditions? You may recall from our lecture on finite difference
methods for BVPs that the boundary conditions have to be incorpo-
rated into the matrix system. That is not true here: the boundary
conditions are already built into V , and thus into the basis functions
{φi1 , . . . , φin}. Because the boundary conditions are built into our
approximation space, we do not need to modify the system (17) in
any way.

We now have a general framework for developing spectral meth-
ods for the 1D Poisson equation! Next time, we will consider a few
examples where we apply this formulation to approximate the BVP
solution.
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