I ILLINOIS

Lecture 15: Error in BVPPs

Today:

* Continue with Finite difference methods applied to boundary
value problems (BVPs)
* Characterize the error properties of our degree-2 FD method



Where are we up to now?

Last time.
(A) We developed a general protocol for developing FD methods for BVPs

(B) We wrote out the specific formula to solve for our approximate solution using a degree-2
local polynomial interpolant
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Write more succinctly as At = f

Today. How should we expect the error of the degree-2 FD method to scale?

* Just as we saw for I[VPs, we will find that the global error that we care about will again
depend on notions of truncation error and stability.

e We will make these notions precise in the context of BVPs today

e We will characterize the error for the specific degree 2 FD method above, but the same

procedure can be extended to other methods.



Defining convergence

Our aim today is to show that an FD method will approach the true solution as we decrease
Ax. That is, we want to know if the approximate solution converges to the true solution

Let’s define what we mean by convergence
First, define the approximate solution and true solution at these discretization points as
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Then what we want to know is:
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That is, if we define the error vector as e := u — i1, then what we want to know is does
the error decay to zero as Ax — 0?



The 2 sources to error:
Our old friends truncation error and stability

Notice that the error vector satisfies a special equation:

Ae = A(u— 1
( (Using the equation from Slide 2)
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Using this, we can say that the norm of the error is
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/ i Truncation error: what is the error
associated with trying the FD method on

Stability: does this inverse matrix stay the true solution?
bounded as Ax — 0? &_ We will use Taylor series to show that our
/ degree-2 FD method has a truncation error
that scales as O(Ax?). (The same general
We will assume that this stays bounded by procedure can be applied to other FD
a constant for our method (see the typed methods)

notes for more details)

The punchline: by putting the results for stability and truncation error together, we have

|le||, < cAx* i.e., the error scales as O(Ax?)  This scaling is specific to our method, but
\ this approach of utilizing stability and

— truncation error to characterize the overall
error applies to all FD methods!




Characterizing the truncation error

Analogous to the IVP setting, we define the truncation error in this BVP setting by applying
our FD method to the true solution and moving all terms to the same side of the equation:

T=Au—f

Using our previous results, we can write out the j h component of the truncation error as
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Writing out u(x;_), u(x;, ) in a Taylor series about x;:
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Plugging these expressions into 7; gives
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Punchline: The truncation error decays at a rate of Ax? as Ax — 0



Truncation error and consistency

Definition: consistency

A finite difference method that is written in the form Au = f
is called consistent if it has a truncation error that goes to zero
as Ax — 0. If, moreover, the truncation error vanishes at a rate
of Ax", the method is said to be consistent with order .



Characterizing convergence in terms of stability and
truncation error

Definition: convergence (take 2)

A finite difference method that is written in the form Au = f
is called convergent if it is stable and consistent. If, moreover,
the method is consistent with order 7, it is called an 7" order
method (this is because the error decays at the same rate as
the truncation error by virtue of (4)).

The inequality on slide 4



