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Lecture 15: Error in BVPs

Today:

• Continue with Finite difference methods applied to boundary 
value problems (BVPs)
• Characterize the error properties of our degree-2 FD method
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Where are we up to now?

2

Last time. 
(A)  We developed a general protocol for developing FD methods for BVPs
(B) We wrote out the specific formula to solve for our approximate solution using a degree-2 

local polynomial interpolant

Today. How should we expect the error of the degree-2 FD method to scale? 
• Just as we saw for IVPs, we will find that the global error that we care about will again 

depend on notions of truncation error and stability.
• We will make these notions precise in the context of BVPs today
• We will characterize the error for the specific degree 2 FD method above, but the same 

procedure can be extended to other methods. 
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Either of the variants (15) or (16) are valid and will lead to iden-

Can you convince yourself that (15) and
(16) will give identical answers?

tical numerical solutions (to within machine precision). However,
the smaller form (16) can be useful both for analyzing the conver-
gence properties of the method and for developing fast solution
approaches.

A coded example and motivation for understanding con-
vergence

Let us put our new method to the test and work through a specific
problem. We will consider (3) with

f (x) = �4(b � a)p sin(2p(b � a)x)

�4(b � a)2p2x cos(2p(b � a)x)
(17)

The exact solution to this problem is u(x) = x cos(2p(b � a)x), and
the associated boundary conditions are ua = a cos(2p(b � a)a) and
ub = b cos(2p(b � a)b). We will use a = 2 and b = 4, though any
values will work.

How did I arrive at this exact solution?
I chose it: one can arbitrarily choose
any function to be the “exact solution”,
and determine what f (x) and the
boundary conditions must be such
that the desired function is indeed a
solution. This approach is called the
method of manufactured solutions, and is
immensely important to testing new
algorithms and codes.

We can solve for the uj that approximates u(xj) at the various in-
terpolation points using (15) or (16). We adopt the following notation:
the discrete points and numerical solution are collected into a vector
via x̂ = [x1, x2, . . . , xn+1]T and û = [u1, u2, . . . , un+1]T . Notice the
distinction between these vector variables and the scalar-valued exact
solution u(x).

It is clear from the figure that our numerical solution is getting
better as n increases. That is, uj gets closer to u(xj) for j = 1, . . . , n + 1
as n gets larger. We can make this more precise by looking at the
error in the numerical solution. Figure 3 shows the quantity

||u � û||2 (18)

where u is understood to be the element-wise application of the exact
solution u on the interpolation points contained in x̂, and || · ||2 is the
grid function 2-norm defined as

Where did the factor of Dx arise from?
The grid function norm aims to approx-
imate the size of a function over the
domain [a, b]. In a continuous setting,

this quantity would be
qR b

a g2(x)dx.
Notice that this means that the norm
is induced from the inner product
( f , g) =

R b
a f (x)g(x)dx. The grid

function norm mimics this integration
through the factor Dx. Note that for
an r-dimensional problem, the factor
becomes Dxr instead of Dx.

||g||2 :=

vuutDx
n

Â
j=1

g2
j (19)

Write more succinctly as Aû = f



Defining convergence

3

Our aim today is to show that an FD method will approach the true solution as we decrease 
. That is, we want to know if the approximate solution converges to the true solutionΔx

Let’s define what we mean by convergence

First, define the approximate solution and true solution at these discretization points as

û =
u2
⋮
un

u =
u(x2)

⋮
u(xn)

Approximate solution at 
all the xj

True solution at all the xj

Then what we want to know is:

Lecture 16
Error in FD methods for BVPs

We will continue our exploration of the 2nd order finite difference
method for solving the 1D Poisson equation. Our focus will be on
defining and characterizing the convergence behavior of our solution
method.

Again, remember that the analysis done
here extends straightforwardly to the
more general BVP

a
d

2
u

dx2 + b
du

dx
+ gu = f , x 2 [a, b] (1)

1 Convergence of the 2nd
order finite difference method

Motivated by the cliffhanger ending of the last lecture, we continue
our question of whether we can characterize how û converges to u.
Before proceeding with this investigation, let us finally add some pre-
cision to this notion of convergence. By asking about the convergence
behavior of our finite difference solution, we are asking the following
mathematical question:

lim
n!•

||u � û||2 (2)

In words, when we consider conver-
gence we are asking the question of
how the numerical solution approaches
(or does not approach) the exact solu-
tion as the number of discretization
points grows infinitely large (we could
equivalently consider the limit as
Dx ! 0).

The aim of this section will be to characterize the convergence
behavior of our 2nd-order finite difference method. To facilitate this,
let us define the error vector e := u � û, and write the matrix system
from the last lecture more succinctly as Aû = f . Now note that

Ae = A(u � û)

= Au � f
(3) We used the fact that Aû = f .

We can use (3) to arrive at the desired expression for ||e||2 =

||u � û||2. Pre-multiplying (3) by A�1 and taking the grid function
2-norm of the result gives Recall that we defined the grid function

2-norm in the last lecture.

The inequality arises from the definition
of the induced matrix 2-norm. We do
not have time to discuss the details
of this beautiful quantity, but you are
encouraged to explore the matrix norm
on Wikipedia if you are interested!

||e||2 =
���
���A�1⇥Au � f

⇤���
���
2


���
���A�1

���
���
2
||Au � f ||2

(4)

The beautiful error bound (4) demonstrates that there are two
sources that contribute to the error:

a) The error associated with using the exact solution at the interpola-
tion points, u, in the finite difference method. This source of error
is called the truncation error.

b) The bound associated with the 2-norm of the matrix A�1.
Take some time to convince yourself
that the error associated with b) is
indeed nonzero. Why is this the case?
The reason is that the finite difference
operator A approximates—but is
not equal to—d

2/dx
2. If A exactly

represented the second derivative
operator, then there would be zero error
in using u in b).

We will characterize each of the two sources of error in turn.

That is, if we define the error vector as                       , then what we want to know is does 
the error decay to zero as ?Δx → 0

Lecture 16
Error in FD methods for BVPs

We will continue our exploration of the 2nd order finite difference
method for solving the 1D Poisson equation. Our focus will be on
defining and characterizing the convergence behavior of our solution
method.

Again, remember that the analysis done
here extends straightforwardly to the
more general BVP

a
d

2
u

dx2 + b
du

dx
+ gu = f , x 2 [a, b] (1)

1 Convergence of the 2nd
order finite difference method

Motivated by the cliffhanger ending of the last lecture, we continue
our question of whether we can characterize how û converges to u.
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The 2 sources to error:
Our old friends truncation error and stability

4

Notice that the error vector satisfies a special equation:
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(Using the equation from Slide 2)

Using this, we can say that the norm of the error is
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Stability: does this inverse matrix stay 
bounded as ?Δx → 0

Truncation error: what is the error 
associated with trying the FD method on 
the true solution?

We will assume that this stays bounded by 
a constant for our method (see the typed 
notes for more details)

We will use Taylor series to show that our 
degree-2 FD method has a truncation error 
that scales as . (The same general 
procedure can be applied to other FD 
methods)

O(Δx2)

The punchline: by putting the results for stability and truncation error together, we have
| |e | |2 ≤ cΔx2 i.e., the error scales as O(Δx2) This scaling is specific to our method, but 

this approach of utilizing stability and 
truncation error to characterize the overall 
error applies to all FD methods!



Characterizing the truncation error
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The truncation error
Before analyzing the truncation error, let us stop and make sure

we understand what we need from this source of error to arrive at
a convergent finite difference method. Let us assume for now that
||A�1||2 < c (we will show that this is true later in this lecture).
Thus, by virtue of (4), if we want the size of the error ||e||2 to vanish
as Dx ! 0, we must have that the truncation error goes to zero as
Dx ! 0. We will show that this is indeed the case for our finite
difference method.

Recall from our observation a) above that the truncation error
arises from applying the finite difference approximation to the exact
solution evaluated at the interpolation points. Defining by t the
truncation error vector, t = Au � f , we have that the j

th entry of t is

tj =
1

Dx2
�
u(xj�1)� 2u(xj) + u(xj+1)

�
� f (xj) (5)

To arrive at a meaningful variant of this expression, we will Taylor
expand u(xj�1) and u(xj+1) about xj. Doing this yields an approxi-
mation for tj that is valid in the limit of small Dx:

For example,

u(xj+1) = u(xj) + Dx
du

dx
+

Dx
2

2
d

2
u

dx2

+
Dx

3

6
d

3
u

dx3 + O(Dx
4)

tj =
Dx

2

12
d

4
u

dx4 + O(Dx
4) (6)

This analysis demonstrates that the truncation error indeed van-
ishes to zero as Dx vanishes. But we can say more: the truncation
error decays at a rate of Dx

2 as Dx ! 0.
The importance of the qualities that i) the truncation error van-

ishes and ii) the rate at which it vanishes motivate the following
definition:

Definition: consistency

A finite difference method that is written in the form Au = f
is called consistent if it has a truncation error that goes to zero
as Dx ! 0. If, moreover, the truncation error vanishes at a rate
of Dx

r, the method is said to be consistent with order r.

The error contribution from A�1

Our aim will be to demonstrate that ||A�1||2 remains bounded
in the limit as Dx ! 0. If this is true, then ||A�1||2 < c for some
constant c irrespective of the value of Dx. This fact will gave us a
useful way to bound (4) from above.

How do we demonstrate this nonsingular nature of A? Our ap-
proach will be to construct the eigendecomposition of A, and use this
to arrive at a bound for the norm of its inverse. That is, we seek a set

Analogous to the IVP setting, we define the truncation error in this BVP setting by applying 
our FD method to the true solution and moving all terms to the same side of the equation:

Using our previous results, we can write out the  component of the truncation error asjth
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Writing out  in a Taylor series about :u(xj−1), u(xj+1) xj

u(xj+1) = u(xj) + Δxu′ (xj) +
Δx2

2
u′ ′ (xj) +

Δx3

6
u′ ′ ′ (xj) +

Δx4

24
u′ ′ ′ ′ (xj) + ⋯

u(xj−1) = u(xj) − Δxu′ (xj) +
Δx2

2
u′ ′ (xj) −

Δx3

6
u′ ′ ′ (xj) +

Δx4

24
u′ ′ ′ ′ (xj) + ⋯

Plugging these expressions into  givesτj

τj =
Δx2

12
u′ ′ ′ ′ (xj) + ⋯

Punchline: The truncation error decays at a rate of  as Δx2 Δx → 0



Truncation error and consistency
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||A�1||2 < c (we will show that this is true later in this lecture).
Thus, by virtue of (4), if we want the size of the error ||e||2 to vanish
as Dx ! 0, we must have that the truncation error goes to zero as
Dx ! 0. We will show that this is indeed the case for our finite
difference method.

Recall from our observation a) above that the truncation error
arises from applying the finite difference approximation to the exact
solution evaluated at the interpolation points. Defining by t the
truncation error vector, t = Au � f , we have that the j

th entry of t is

tj =
1

Dx2
�
u(xj�1)� 2u(xj) + u(xj+1)

�
� f (xj) (5)

To arrive at a meaningful variant of this expression, we will Taylor
expand u(xj�1) and u(xj+1) about xj. Doing this yields an approxi-
mation for tj that is valid in the limit of small Dx:

For example,

u(xj+1) = u(xj) + Dx
du

dx
+

Dx
2

2
d

2
u

dx2

+
Dx

3

6
d

3
u

dx3 + O(Dx
4)

tj =
Dx

2

12
d

4
u

dx4 + O(Dx
4) (6)

This analysis demonstrates that the truncation error indeed van-
ishes to zero as Dx vanishes. But we can say more: the truncation
error decays at a rate of Dx

2 as Dx ! 0.
The importance of the qualities that i) the truncation error van-

ishes and ii) the rate at which it vanishes motivate the following
definition:

Definition: consistency

A finite difference method that is written in the form Au = f
is called consistent if it has a truncation error that goes to zero
as Dx ! 0. If, moreover, the truncation error vanishes at a rate
of Dx

r, the method is said to be consistent with order r.

The error contribution from A�1

Our aim will be to demonstrate that ||A�1||2 remains bounded
in the limit as Dx ! 0. If this is true, then ||A�1||2 < c for some
constant c irrespective of the value of Dx. This fact will gave us a
useful way to bound (4) from above.

How do we demonstrate this nonsingular nature of A? Our ap-
proach will be to construct the eigendecomposition of A, and use this
to arrive at a bound for the norm of its inverse. That is, we seek a set
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Definition: convergence (take 2)

A finite difference method that is written in the form Au = f
is called convergent if it is stable and consistent. If, moreover,
the method is consistent with order r, it is called an r

th order
method (this is because the error decays at the same rate as
the truncation error by virtue of (4)).

Why have we spent so much time defining these ideas of stability
and convergence? The answer is because these concepts apply to
general finite difference methods, and are not restricted to the 2nd

order method we derived in Lecture 3. Convince yourself of this
by going back through this derivation and verifying that we did
not make any assumptions except that the method could be cast as
Au = f !

2 A practical convergence test

We now have analytical arguments that tell us that our method
converges and, beyond this, that it is a second order method. Do we
see this in practice?

We already know from the last lecture that method indeed con-
verges as Dx ! 0. But does it converge at the expected rate. We
reproduce the convergence plot from the last lecture below, now su-
perposed with an additional curve of Dx

2. Indeed, our method is of
order 2.

Brain teaser: why is the rate of error
decay different for the largest two
values of Dx?

Figure 1: Error in the numerical so-
lution of the 1D Poisson equation
as a function of 1/n, along with the
expected Dx

2 scaling.

The inequality on slide 4


