
Error in FD methods for BVPs

We will continue our exploration of the 2nd order finite difference
method for solving the 1D Poisson equation. Our focus will be on
defining and characterizing the convergence behavior of our solution
method.

Again, remember that the analysis done
here extends straightforwardly to the
more general BVP

α
d2u
dx2 + β

du
dx

+ γu = f , x ∈ [a, b] (1)

1 Convergence of the 2nd order finite difference method

Motivated by the cliffhanger ending of the last lecture, we continue
our question of whether we can characterize how û converges to u.
Before proceeding with this investigation, let us finally add some pre-
cision to this notion of convergence. By asking about the convergence
behavior of our finite difference solution, we are asking the following
mathematical question:

lim
n→∞

||u− û||2 (2)

In words, when we consider conver-
gence we are asking the question of
how the numerical solution approaches
(or does not approach) the exact solu-
tion as the number of discretization
points grows infinitely large (we could
equivalently consider the limit as
∆x → 0).

The aim of this section will be to characterize the convergence
behavior of our 2nd-order finite difference method. To facilitate this,
let us define the error vector e := u− û, and write the matrix system
from the last lecture more succinctly as Aû = f . Now note that

Ae = A(u− û)

= Au− f
(3) We used the fact that Aû = f .

We can use (3) to arrive at the desired expression for ||e||2 =

||u− û||2. Pre-multiplying (3) by A−1 and taking the grid function
2-norm of the result gives Recall that we defined the grid function

2-norm in the last lecture.

The inequality arises from the definition
of the induced matrix 2-norm. We do
not have time to discuss the details
of this beautiful quantity, but you are
encouraged to explore the matrix norm
on Wikipedia if you are interested!

||e||2 =
∣∣∣∣∣∣A−1[Au− f

]∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2
||Au− f ||2

(4)

The beautiful error bound (4) demonstrates that there are two
sources that contribute to the error:

a) The error associated with using the exact solution at the interpola-
tion points, u, in the finite difference method. This source of error
is called the truncation error.

b) The bound associated with the 2-norm of the matrix A−1.
Take some time to convince yourself
that the error associated with b) is
indeed nonzero. Why is this the case?
The reason is that the finite difference
operator A approximates—but is
not equal to—d2/dx2. If A exactly
represented the second derivative
operator, then there would be zero error
in using u in b).

We will characterize each of the two sources of error in turn.
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The truncation error

Before analyzing the truncation error, let us stop and make sure
we understand what we need from this source of error to arrive at
a convergent finite difference method. Let us assume for now that
||A−1||2 < c (we will show that this is true later in this lecture).
Thus, by virtue of (4), if we want the size of the error ||e||2 to vanish
as ∆x → 0, we must have that the truncation error goes to zero as
∆x → 0. We will show that this is indeed the case for our finite
difference method.

Recall from our observation a) above that the truncation error
arises from applying the finite difference approximation to the exact
solution evaluated at the interpolation points. Defining by τ the
truncation error vector, τ = Au− f , we have that the jth entry of τ is

τj =
1

∆x2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
− f (xj) (5)

To arrive at a meaningful variant of this expression, we will Taylor
expand u(xj−1) and u(xj+1) about xj. Doing this yields an approxi-
mation for τj that is valid in the limit of small ∆x:

For example,

u(xj+1) = u(xj) + ∆x
du
dx

+
∆x2

2
d2u
dx2

+
∆x3

6
d3u
dx3 + O(∆x4)

τj =
∆x2

12
d4u
dx4 + O(∆x4) (6)

This analysis demonstrates that the truncation error indeed van-
ishes to zero as ∆x vanishes. But we can say more: the truncation
error decays at a rate of ∆x2 as ∆x → 0.

The importance of the qualities that i) the truncation error van-
ishes and ii) the rate at which it vanishes motivate the following
definition:

Definition: consistency

A finite difference method that is written in the form Au = f
is called consistent if it has a truncation error that goes to zero
as ∆x → 0. If, moreover, the truncation error vanishes at a rate
of ∆xr, the method is said to be consistent with order r.

The error contribution from A−1

Our aim will be to demonstrate that ||A−1||2 remains bounded
in the limit as ∆x → 0. If this is true, then ||A−1||2 < c for some
constant c irrespective of the value of ∆x. This fact will gave us a
useful way to bound (4) from above.

How do we demonstrate this nonsingular nature of A? Our ap-
proach will be to construct the eigendecomposition of A, and use this
to arrive at a bound for the norm of its inverse. That is, we seek a set
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of matrices V and Λ such that

A = VΛV−1 (7)

Let us pull a rabbit out of a hat: the ith element of the jth eigenvec-
tor of A, vj, is given by

(vj)i = sin(jπ(i∆x)),

j = 1, . . . , n− 2; i = 1, . . . , n− 2
(8)

This is not as out of nowhere as
it may first appear. Recall that
vj(x) = sin(jπ(x − a)/(b − a)) is
the eigenfunction associated with the
operator d2/dx2. That is, we can think
of d2/dx2 as an infinite-dimensional
matrix. Defining L := d2/dx2, notice
that Lvj = −(jπ/(b− a))2vj = λjvj. So
the eigenvectors of A mimic the eigen-
vectors of the operator it approximates!

Let us verify that these are indeed eigenvectors of A by direct
computation. The kth entry of the vector Avj is

In going from the second to third line,
we wrote (k − 1)∆x and (k + 1)∆x as
k∆x − ∆x and k∆x + ∆x, respectively,
and used standard trigonometric
identities.

(Avj)k =
1

∆x2

[
(vj)k−1 − 2(vj)k + (vj)k+1

]
=

1
∆x2 [sin(jπ(k− 1)∆x)− 2 sin(jπk∆x) + sin(jπ(k + 1)∆x)]

=
1

∆x2 [sin(jπk∆x) cos(jπ∆x)− 2 sin(jπk∆x)+

sin(jπk∆x) cos(jπ∆x)]

=
2(cos(jπ∆x)− 1)

∆x2 sin(jπk∆x)

= λj(vj)k
(9)

So vj is indeed an eigenvector of A, and it has an associated eigen-
value

λj = (2/∆x2)(cos(jπ∆x)− 1) (10)

The eigenvectors enjoy an additional property:

This orthogonality property is also
a feature of the eigenfunctions of
L = d2/dx2. One can show that∫ b

a sin(jπ(x − a)/(b − a)) sin(iπ(x −
a)/(b− a))dx = 0 if i 6= j.

vT
j vi =

0 i 6= j

n− 1 i = j
(11)

Thus, the expression for V−1 is straightforward: V−1 = 1/(n −
1)V T . In fact, we could have anticipated this property of the eigen-
vectors of A. For any real symmetric matrix, its eigendecomposition
leads to an eigenvector matrix that is unitary, i.e., having an inverse
equal to its transpose (to within a constant scaling, which is not par-
ticularly important because eigenvectors are only unique up to a
constant anyway).

We now have what we need to bound ||A−1||2. First, observe that

A−1 =
(

VΛV T
)−1

=
(

V T
)−1

Λ−1V−1

= VΛ−1V T

(12)
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and since Λ is a diagonal matrix, its inverse is also diagonal with
entries (Λ−1)ii = λ−1

i . Thus, like A, A−1 also possesses unitary
eigenvectors. Its norm is therefore given by∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2
=
∣∣∣∣∣∣Λ−1

∣∣∣∣∣∣
2
= max

i=1,...,n
|λ−1

j | (13)

That is, the norm of A−1 is given by the eigenvalue of A of smallest
modulus. From the definition of the eigenvalues of A provided in
(10), this smallest eigenvalue is λ1 = (2/∆x2)(cos(π∆x)− 1). Is this
bounded as ∆x → 0? We may consider a Taylor series about ∆x = 0:

λ1 =

(
2

∆x2

)
(cos(π∆x)− 1)

=

(
2

∆x2

)(
−1

2
π2∆x2 +

1
24

π4∆x4 + O
(

∆x6
))

≈ −π2

(14)

So we can indeed say that ||A−1||2 is bounded by a constant (which

This expansion is valid for sufficiently
small ∆x.

must be larger than ∼ 1/π2). This fact is crucial to establishing the
convergence of our finite difference method. If ||A−1||2 were not
bounded, our finite difference method would not converge. Because
of its importance, we assign a definition related to the boundedness
of A−1:

Definition: stability

A finite difference method that is written in the form Au = f
is called stable if ||A−1||2 < c for some constant c that is inde-
pendent of ∆x. Stability is a necessary condition for the finite
difference method to converge.

We are defining stability in terms of
finite difference methods, but there
are analogous definitions for other
numerical methods.

One important note before we move onto the truncation error of
our finite difference method: the eigenvectors vj and eigenvalues
λj only belong to the matrix A associated with the truncated linear
system from the last lecture. The fact that this truncated matrix yields
such a cleanly expressible set of eigenvectors and eigenvalues makes
it invaluable for studying the convergence of our second order finite
difference method.

Convergence

Now that we have the definitions of stability and consistency, we
can recast our definition of convergence in terms of these important
concepts:



error in fd methods for bvps 5

Definition: convergence (take 2)

A finite difference method that is written in the form Au = f
is called convergent if it is stable and consistent. If, moreover,
the method is consistent with order r, it is called an rth order
method (this is because the error decays at the same rate as
the truncation error by virtue of (4)).

Why have we spent so much time defining these ideas of stability
and convergence? The answer is because these concepts apply to
general finite difference methods, and are not restricted to the 2nd

order method we derived in Lecture 3. Convince yourself of this
by going back through this derivation and verifying that we did
not make any assumptions except that the method could be cast as
Au = f !

2 A practical convergence test

We now have analytical arguments that tell us that our method
converges and, beyond this, that it is a second order method. Do we
see this in practice?

We already know from the last lecture that method indeed con-
verges as ∆x → 0. But does it converge at the expected rate. We
reproduce the convergence plot from the last lecture below, now su-
perposed with an additional curve of ∆x2. Indeed, our method is of
order 2.

Brain teaser: why is the rate of error
decay different for the largest two
values of ∆x?

Figure 1: Error in the numerical so-
lution of the 1D Poisson equation
as a function of 1/n, along with the
expected ∆x2 scaling.
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