I ILLINOIS

Lecture 14: Boundary
Value Problems

Today:

* Finite difference methods applied to boundary value problems
(BVPs)

Where are we up to now?

After function approximation, we...

(A)developed finite difference methods (one-step and multi-step) methods for solving initial
value problems

(B) learned how to predict the accuracy of a given method (i.e., how its global error scales) by

combining the topics of local truncation error and absolute stability. The FD solution
converges to the true solution at order p if

(i) the method has a truncation error that scales as O(At")
(ii) the method is absolutely stable at Az = 0
(C) used the concept of absolute stability to give us a way of determining a At that would

lead to a solution that does not blow up (note: this does not guarantee anything about
accuracy until itself!)

This week. Finite difference methods for BVPs.

* Still based on local polynomial interpolation, but the different nature of the ODE changes
the numerical approximation technique

Reminder: what is a BVP?

Before talking about solving BVPs, let’s remind ourselves what a BVP is.

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

The canonical BVP we will consider is

d2u+ +yu=f, x¢€|ab]
Y ix2 ’de = ’

for real constants « and B, 7y, boundary points a and b (a < b)

Key difference from IVPs: instead of an initial condition, BVPs require boundary conditions
on both ends a, b. There are many options, but we will focus on Dirichlet conditions for now
(prescribing the value of the solution at a, b)

u(a) = ug, u(b) =4

These are given/prescribed

A simple example BVP:
the 1D Poisson problem

We will focus in many of our lectures on developing our numerical method against the
simple case whena =1, =0,y = 0:

2
% = f, x€la,b] (*)

(with appropriate boundary conditions, BCs, such as Dirichlet conditions)

This has a known analytical solution (just integrate both sides twice!)

— useful test bed for developing and checking our numerical techniques!

Finite difference (FD) methods for BVPs:
Discretizing the domain

Create a uniformly distributed set of points:

(b—a)(j—1)

Xj=a-+ ,]7=1,...,n4+1
n

a b

S P S S ——

x]. xz _X'3 . o .Xn xn_|_1

Brain teaser: should we be scared about using uniformly spaced points?

(-

If we were using global interpolation, and requiring high-degree polynomials, this uniform distribution would be problematic

No! We are using local interpolation, which means we will be dealing with low-degree polynomials

FD methods for BVPs:
Approximating the unknown solution with polynomial interpolation

We will approximate u(x) locally using a p"”* order polynomial.

That is, represent u(x) as a degree-p polynomial at each discrete point,
Xj, j=1,...n+1

Centered interpolation points are

For each x;, we therefore need p + 1 points to define the interpolant.
J very common, but not the only
\ ’
. . . . L K option. E.g., could look only to the
We will pick p'points in addition to x;, céntered around x; right of point p and get a one side
FD method
Leads to a class of FD methods {x]'_P/z, ceey x]-, c ooy X]'_|_p/2}

called centered FD methods
Note: requires p is even!

Same approach as in

How do we represent u(x) as a degree p polynomial at these p + 1 points? /. * approximation!

Represent as an expansion in the Lagrange basis in terms of unknown coefficients that

we will solve for!

But... we will use a different polynomial for each x; point, so we will need to change

our notation for the Lagrange basis functions a bit...

FD methods for BVPs:
Defining the Lagrange basis functions centered at x;

The (j) means this Lagrange functionis = we call Llfj) the k" Lagrange function centered at X;

centered at x;
J v jt+p/2
= T1 = k=i p/ /
k - _ =]—p/2,...,],...,]+p/2.
m=j—p/a Xk = ¥m J=PI & ees)re s] TP
(m#k)
Same general structure as the old
Bounds on the product indices do not formula, but with some differences...

go from 1 to n + 1, and only involve the
points used to locally interpolate u at x;

Same comment for the k indices

These formulae are always scary to work with at first. Let’s take an example:

If we wanted to interpolate u(x) locally as a 2" order polynomial about a point x5, we
would write

u(x) = C4Li5)(x) + CSLS(S)(X) + C6L6(5)(X)
for some unknown constants ¢y, ¢s, g -

And we can write out the Lagrange basis functions as

(X — X5)(x — Xg) (X — x)(x — Xg) (X — x)(x — X5)

G)(+) —

O)(+) = () —

(xg — X5)(X4 — X) (X5 — X4) (X5 — Xg) (Xg — X4)(Xg — X5)

FD methods for BVPs:
Using the Lagrange basis functions to approximate the BVP solution

We use the Lagrange basis functions to represent the BVP solution u(x) locally about each x;
in terms of unknown coefficients that we will solve for:

jtp/2 .
(*) u(x) = Z uiLz(]) (x) (for j ranging the number of interpolation points)

i=j—p/2 \
Note that the unknown coefficients are

u;, the FD approximation for the
solution u(x;)

Why?

Consider evaluating u(x) at one of the interpolation points:

Jtpl2 () Remember, the Lagrange basis functions satisfy
u(xk) ~ Z CiL‘ (xk) L) = 1l i=k
4 ! i Tk 0 else
i=j—p/2

_ Punchline: the coefficients in the expansion (**) are

the approximate values of u at the various
interpolation points!

FD methods for BVPs:
Solving for the unknown coefficients uy, ..., u, | via the FD equations

Plug (**) into the BVP (*) to get

+p/2 27 (7)
JTP d°L;

Z Ui A2 :f(xj)

i:j_p/z X=X;

This gives an equation for each x; which we can use to solve for the various

coefficients uy, ..., u,

This result is for a general p. It is very common to pick p = 2, so we will consider
that case from here on out...

For p = 2:
j+1 .
(**) reduces to u(x) ~ Z uiLl(])(x),]j=2,...,n (***)
i=j—1

And the Lagrange basis functions are more manageable. For example,

(x =) (x = x;11)
Xj—1 — Xj)(Xj—1 — Xj11)
1

= S (= 1)) (x — xj1)

FD methods for BVPs:
Solving for the unknown coefficients uy, ..., 4, ; via the FD equations (cont)

Plugging this polynomial-based approximation (***) for u(x) into (*):

> [1 d? 1
Ui-1775 2Ax2(x—x]-)(x—x]-+1) ‘|‘“j@ _A—xz(x_xj—l)(x_ijrl)

az (1 .
+u]-+1dx2 <2Ax2 (x—x]-l)(x—x]-)> =f(xj), j=2,...,n

One can compute the various derivatives of the polynomials to get

1 .
(****) A—xz (Ll]'_l — 21/{] -+ ”j+1) — f(x]),] — 2,. .o n

We're almost there! We have n — 1 equations in terms of the n + 1 unknowns uy, ..., 4,

But notice that (****) doesn’t hold forj = 1 orj = n + 1 (e.g., #,_; = uy when j = 1, which

doesn’t exist)

We use the boundary conditions (BCs) for the final two unknowns

Ul = Ug, Uy11 = Up

10

FD methods for BVPs:
Assembling the system of equations to solve for the unknowns

We now have n + 1 equations for the n 4+ 1 unknowns! We can assemble the equations in

matrix form as
This just says u; = u,

AV Uq U, —>
1 —2 1 Un f(xz)
1 1 —2 1 Uus f(x3)
A2 —
1 —2 1 Uy f(xn_l)
1 -2 1 Uy, f(xn)
| < Ax? Uyt | up — Thisjustsays u,,; = u,

This is an (n + 1) X (n + 1) dimensional system

This is perfectly correct, but a bit unnecessary.
Can remove the first and last rows and columns and rearrange to get

2 17w] [foe) (@)
1 1 —2 1 Us f(x3
e . _ .
1 =2 1| {uy_q f(xn-1)
I 1 =2 | uy | | f(xy)

Thisis an (n — 1) X (n — 1) dimensional system

11

What does it look like to code this up?

import numpy as np ‘ Conside ferent n es t how

import matplotlib.pyplot as plt 38 nv = np.array([10, 20, 40, 80, 160, 320])

from matplotlib import cm 39

from matplotlib.colors import ListedColormap, LinearSegmentedColormap @ fig, ax = plt.subplots(len(nv[range(3)]), 1, sharex=True, squeeze=False)
from numpy import linalg as LA

err = np.zeros([len(nv),1])

for j in range(len(nv)):
ct soluti
uex(x, L): ¢ = nv[jl
om =1
return xxnp.cos(omk2*np.pixLkx) Build i I int
xj = (a + (b-a)*np.arange(n)/(n-1))
f(x, L):
om = 1 rid spacing
return — 4xLkxomnp.piknp.sin(2%np.pikLkomkx) - \ 2 dx = xj [1]-xj [0]
ALk 2k0Mik2%XkNP . pLkk2knp. oS (2%np. pikLkomkx) ;

.rcParams['text.usetex'] = "True" ¢ i = range(n-2)
A = np.diag(-2%np.ones(n-2)) + np.diag(np.ones(n-3),k=1) + np.diag(np.ones(n-3),k=-1)

abling T L d font

plt.rcParams|['text.latex.preamble'] = r'\usepackage{amsmath,amssymb,bm}" 9 A = 1/(dx**2) * A

(xjlrange(1,n-1)1, L)
= fv[0] - alpha/(dx**2)
] = fv[n-3] - beta/(dx*%2)

fv ="
fv[o]
fv[n-3

fine ari or pre pl na « y1n ¢ uj = LA.solve(A, fv)
xx = np.linspace(a,b,1000)

B(errtmp = np.sqrt(dx) * LA.norm((uj - uex(xj[range(1,n-1)], L)))
alpha = uex(a, L) (err[j] = errtmp
beta = uex(b, L)

if j < 3:
ax[j, @]l.plot(xjlrange(1,n-1)], uj, 'o', label=r'$\hat{\bm{u}}$"')
ax[j, .plot(xx, uex(xx, L), label='$u(x)$"')
ax[j, .set_yticks(np.arange(-5, 10, 5))
ax[j, .set_yticklabels(np.arange(-5, 10, 5))
ax[j, .grid(linewidth=0.5)
ax[j, .set_ylim([-5, 5])
ax[j, .set_xlim([2, 4])
ax[j, .set_ylabel('$n = %i$'%n)

if j ==
ax[j,0].legend(loc = 'lower left')

elif j ==
ax[j, 0].set_xlabel('x')
ax[j, 0].set_xticks(np.arange(2, 4.5, 0.5))
ax[j, 0].set_xticklabels(np.arange(2, 4.5, 0.5))

plt.tight_layout()
Lt. show()

plt.savefig('FD_1D_PoissDense_soln.png', dpi = 400)

