Lecture 14: Boundary Value Problems

Today:

• *Finite difference methods* applied to *boundary value problems* (*BVPs*)

Where are we up to now?

After function approximation, we...

(A) developed *finite difference methods* (*one-step* and *multi-step*) methods for solving *initial value problems*

(B) learned how to predict the accuracy of a given method (i.e., how its global error scales) by combining the topics of *local truncation error* and *absolute stability*. The FD solution converges to the true solution at order *p* if

(i) the method has a truncation error that scales as $O(\Delta t^p)$

(ii) the method is absolutely stable at $\Delta t = 0$

(C) used the concept of absolute stability to give us a way of determining a Δt that would lead to a solution that does not blow up (*note*: this does not guarantee anything about accuracy until itself!)

This week. Finite difference methods for BVPs.

• Still based on *local polynomial interpolation*, but the different nature of the ODE changes the numerical approximation technique

Reminder: what is a BVP?

Before talking about solving BVPs, let's remind ourselves what a BVP is.

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to stimuli/initial conditions, BVPs describe the steady state (or equilibrium) response of a system to forcing.

The canonical BVP we will consider is

$$\alpha \frac{d^2 u}{dx^2} + \beta \frac{d u}{dx} + \gamma u = f, \quad x \in [a, b]$$

for real constants α and β , γ , boundary points *a* and *b* (*a* < *b*)

Key difference from IVPs: instead of an initial condition, BVPs require *boundary conditions on both ends a*, *b*. There are many options, but we will focus on *Dirichlet conditions* for now (prescribing the value of the solution at *a*, *b*)

$$u(a) = u_a, u(b) = u_b$$

These are given/prescribed

A simple example BVP: the 1D Poisson problem

We will focus in many of our lectures on developing our numerical method against the simple case when $\alpha = 1$, $\beta = 0$, $\gamma = 0$:

$$\frac{d^2u}{dx^2} = f, \quad x \in [a, b] \tag{*}$$

(with appropriate *boundary conditions*, *BCs*, such as Dirichlet conditions)

This has a known analytical solution (just integrate both sides twice!)

 \implies useful test bed for developing and checking our numerical techniques!

Finite difference (FD) methods for BVPs: *Discretizing* the domain

Create a uniformly distributed set of points:

Brain teaser: should we be scared about using uniformly spaced points?

No! We are using *local* interpolation, which means we will be dealing with *low-degree polynomials* If we were using global interpolation, and requiring high-degree polynomials, this uniform distribution would be problematic

Approximating the unknown solution with polynomial interpolation

We will approximate u(x) *locally* using a p^{th} order polynomial.

That is, represent u(x) as a degree-*p* polynomial at each discrete point, $x_i, j = 1, \dots, n+1$

For each $x_{i'}$ we therefore need p + 1 points to define the interpolant.

We will pick *p* points in addition to x_j , *centered* around x_j to a class of FD methods $\{x_{j-p/2}, \dots, x_j, \dots, x_{j+p/2}\}$

Leads to a class of FD methods called centered FD methods

Note: requires *p* is even!

FD method

Centered interpolation points are

option. E.g., could look only to the

right of point *p* and get a *one side*

very common, but not the only

How do we represent u(x) as a degree p polynomial at these p + 1 points? Same approach as in function approximation!

Represent as an expansion in the *Lagrange basis* in terms of *unknown coefficients* that we will solve for!

But... we will use a different polynomial for each *x_i* point, so we will need to change our notation for the Lagrange basis functions a bit...

FD methods for BVPs: Defining the Lagrange basis functions centered at x_i

These formulae are always scary to work with at first. Let's take an example:

If we wanted to interpolate u(x) locally as a 2^{nd} order polynomial about a point x_5 , we would write

$$u(x) = c_4 L_4^{(5)}(x) + c_5 L_5^{(5)}(x) + c_6 L_6^{(5)}(x)$$

for some unknown constants c_4 , c_5 , c_6 .

And we can write out the Lagrange basis functions as

$$L_4^{(5)}(x) = \frac{(x - x_5)(x - x_6)}{(x_4 - x_5)(x_4 - x_6)} \quad L_5^{(5)}(x) = \frac{(x - x_4)(x - x_6)}{(x_5 - x_4)(x_5 - x_6)} \quad L_6^{(5)}(x) = \frac{(x - x_4)(x - x_5)}{(x_6 - x_4)(x_6 - x_5)}$$

Using the Lagrange basis functions to approximate the BVP solution

We use the Lagrange basis functions to represent the BVP solution u(x) locally about each x_j in terms of unknown coefficients that we will solve for:

Solving for the unknown coefficients u_1, \ldots, u_{n+1} via the FD equations

Plug (**) into the BVP (*) to get

$$\sum_{i=j-p/2}^{j+p/2} u_i \frac{d^2 L_i^{(j)}}{dx^2} \bigg|_{x=x_j} = f(x_j)$$

This gives an equation for each x_j which we can use to solve for the various coefficients u_1, \ldots, u_{n+1}

This result is for a general *p*. It is very common to pick p = 2, so we will consider that case from here on out...

For p = 2:

(**) reduces to
$$u(x) \approx \sum_{i=j-1}^{j+1} u_i L_i^{(j)}(x), \quad j = 2, ..., n$$
 (***)

And the Lagrange basis functions are more manageable. For example,

$$L_{j-1}^{(j)}(x) = \frac{(x - x_j)(x - x_{j+1})}{(x_{j-1} - x_j)(x_{j-1} - x_{j+1})}$$
$$= \frac{1}{2\Delta x^2}(x - x_j)(x - x_{j+1})$$

Solving for the unknown coefficients $u_1, ..., u_{n+1}$ via the FD equations (cont)

Plugging this polynomial-based approximation (***) for u(x) into (*):

$$u_{j-1}\frac{d^2}{dx^2}\left(\frac{1}{2\Delta x^2}(x-x_j)(x-x_{j+1})\right) + u_j\frac{d^2}{dx^2}\left(-\frac{1}{\Delta x^2}(x-x_{j-1})(x-x_{j+1})\right) + u_{j+1}\frac{d^2}{dx^2}\left(\frac{1}{2\Delta x^2}(x-x_{j-1})(x-x_j)\right) = f(x_j), \quad j = 2, \dots, n$$

One can compute the various derivatives of the polynomials to get

(****)
$$\frac{1}{\Delta x^2} \left(u_{j-1} - 2u_j + u_{j+1} \right) = f(x_j), \quad j = 2, \dots, n$$

We're almost there! We have n - 1 equations in terms of the n + 1 unknowns $u_1, ..., u_{n+1}$ But notice that (****) doesn't hold for j = 1 or j = n + 1 (e.g., $u_{j-1} = u_0$ when j = 1, which doesn't exist)

We use the *boundary conditions* (*BCs*) for the final two unknowns

$$u_1 = u_a, u_{n+1} = u_b$$

Assembling the system of equations to solve for the unknowns

We now have n + 1 equations for the n + 1 unknowns! We can assemble the equations in matrix form as

This is an $(n + 1) \times (n + 1)$ dimensional system

This is perfectly correct, but a bit unnecessary.

Can remove the first and last rows and columns and rearrange to get

$$\frac{1}{\Delta x^2} \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} f(x_2) - \frac{u_a}{\Delta x^2} \\ f(x_3) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) - \frac{u_b}{\Delta x^2} \end{bmatrix}$$

This is an $(n - 1) \times (n - 1)$ dimensional system

What does it look like to code this up?

import numpy as np

import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap from numpy import linalg as LA #Exact solution 10 def uex(x, L): om = 1 return x*np.cos(om*2*np.pi*L*x) 14 def f(x, L): om = 1 return - 4*L*om*np.pi*np.sin(2*np.pi*L*om*x) - \ 4*L**2*om**2*x*np.pi**2*np.cos(2*np.pi*L*om*x); 19 #Use Latex font plt.rcParams['text.usetex'] = "True" 22 #enabling math bold font plt.rcParams['text.latex.preamble'] = r'\usepackage{amsmath,amssymb,bm}' 25 #Interval properties 26 a = 2 27 b = 4 28 L = (b-a)#fine grid for pretty plotting of soln xx = np.linspace(a,b,1000) alpha = uex(a, L) 35 beta = uex(b, L)

if j < 3:

```
ax[j, 0].plot( xj[range(1,n-1)], uj, 'o', label=r'$\hat{\bm{u}}$' )
ax[j, 0].plot( xx, uex(xx, L), label='$u(x)$' )
ax[j, 0].set_yticks( np.arange(-5, 10, 5) )
ax[j, 0].set_yticklabels( np.arange(-5, 10, 5) )
ax[j, 0].set_ytim([-5, 5])
ax[j, 0].set_ytim([-5, 5])
ax[j, 0].set_ytabel( '$n = %i$'%n )

if j == 0:
    ax[j, 0].legend(loc = 'lower left')
elif j == 2:
    ax[j, 0].set_xtabel( '$x$' )
    ax[j, 0].set_xticks( np.arange(2, 4.5, 0.5) )
    ax[j, 0].set_xticklabels( np.arange(2, 4.5, 0.5) )
```

plt.tight_layout()
plt.show()

2 plt.savefig('FD_1D_PoissDense_soln.png', dpi = 400)

#Consider different n values to see how solution changes as we change n nv = np.array([10, 20, 40, 80, 160, 320])

fig, ax = plt.subplots(len(nv[range(3)]), 1, sharex=True, squeeze=False)

err = np.zeros([len(nv),1])

```
for j in range(len(nv)):
```

n = nv[j]

#Build interp points xj = (a + (b-a)*np.arange(n)/(n-1))

#grid spacing dx = xj[1]-xj[0]

#Build A
#Diag terms
ind = range(n-2)
A = np.diag(-2*np.ones(n-2)) + np.diag(np.ones(n-3),k=1) + np.diag(np.ones(n-3),k=-1)

A = 1/(dx * 2) * A

#Build RHS
fv = f(xj[range(1,n-1)], L)
fv[0] = fv[0] - alpha/(dx**2)
fv[n-3] = fv[n-3] - beta/(dx**2)

uj = LA.solve(A, fv)

errtmp = np.sqrt(dx) * LA.norm((uj - uex(xj[range(1,n-1)], L)))
err[j] = errtmp