
BRAND ARCHITECTURE
Block I Logo & Illinois Wordmark | Version 2.0 Lecture 14: Boundary

Value Problems

Today:

• Finite difference methods applied to boundary value problems
(BVPs)

1

Where are we up to now?

2

After function approximation, we…
(A)developed finite difference methods (one-step and multi-step) methods for solving initial

value problems
(B) learned how to predict the accuracy of a given method (i.e., how its global error scales) by

combining the topics of local truncation error and absolute stability. The FD solution
converges to the true solution at order if

(i) the method has a truncation error that scales as
(ii) the method is absolutely stable at

(C) used the concept of absolute stability to give us a way of determining a that would
lead to a solution that does not blow up (note: this does not guarantee anything about
accuracy until itself!)

p
O(Δtp)

Δt = 0
Δt

This week. Finite difference methods for BVPs.
• Still based on local polynomial interpolation, but the different nature of the ODE changes

the numerical approximation technique

Reminder: what is a BVP?

3

Before talking about solving BVPs, let’s remind ourselves what a BVP is.

Lecture 15
Finite difference methods for boundary value prob-
lems

In the last several lectures, we considered finite difference methods
for initial value problems. We will transition in this lecture to nu-
merical methods for boundary value problems (BVPs). We will focus
this week on finite difference methods for BVPs. Just as we saw for
IVPs, finite difference methods for BVPS are based on local interpo-
lation. This connection makes them a natural segue from our IVP
discussion. Next week, we will consider a different class of numerical
methods for BVPs referred to as spectral methods. By contrast with
the interpolation-based finite difference method, spectral methods are
based on least-squares approximation of the solution to the BVP.

The distinction between finite differ-
ence methods and spectral methods is
analogous to the difference between
interpolation and least squares approxi-
mation for functions, which we covered
earlier this semester.

1 Boundary value problems

Before diving into finite difference methods for BVPs, we first take a
moment to review what defines this type of differential equation in
the first place. The BVPs we will consider are of the form

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (1)

for real constants a and b, g, boundary points a and b (a < b), and
some prescribed forcing f (x). BVPs are fully defined by augmenting
the differential equation (1) with boundary conditions. For now, we will
consider the so-called Dirichlet boundary conditions

Can you write down another set of
admissable boundary conditions for
this 1D problem?

u(a) = ua, u(b) = ub (2)

Notice the definitional distinction from IVPs: in this case the
prescribed conditions for u(x) are not at an initial instance in time,
but instead enforce that u satisfy conditions at the boundary points
x = a and x = b. Let us make this distinction clear:

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

It is precisely this distinction from IVPs
that makes BVPs amenable to solution
strategies besides finite difference
methods, which are based on local
interpolation. While finite difference
methods work well for these types of
problems, the presence of boundary
conditions that define the solution
globally makes global approaches
suitable candidates for BVPs. By
contrast, the dynamical evolution of
an IVP from an initial condition makes
the local-interpolation-based finite
difference method by far the most
common numerical framework for IVPs.

1.1 The Poisson problem

In the next two lectures, we will consider the specific case of (1)
where a = 1 and b = g = 0. This is called the 1D Poisson problem,

The canonical BVP we will consider is

Lecture 15
Finite difference methods for boundary value prob-
lems

In the last several lectures, we considered finite difference methods
for initial value problems. We will transition in this lecture to nu-
merical methods for boundary value problems (BVPs). We will focus
this week on finite difference methods for BVPs. Just as we saw for
IVPs, finite difference methods for BVPS are based on local interpo-
lation. This connection makes them a natural segue from our IVP
discussion. Next week, we will consider a different class of numerical
methods for BVPs referred to as spectral methods. By contrast with
the interpolation-based finite difference method, spectral methods are
based on least-squares approximation of the solution to the BVP.

The distinction between finite differ-
ence methods and spectral methods is
analogous to the difference between
interpolation and least squares approxi-
mation for functions, which we covered
earlier this semester.

1 Boundary value problems

Before diving into finite difference methods for BVPs, we first take a
moment to review what defines this type of differential equation in
the first place. The BVPs we will consider are of the form

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (1)

for real constants a and b, g, boundary points a and b (a < b), and
some prescribed forcing f (x). BVPs are fully defined by augmenting
the differential equation (1) with boundary conditions. For now, we will
consider the so-called Dirichlet boundary conditions

Can you write down another set of
admissable boundary conditions for
this 1D problem?

u(a) = ua, u(b) = ub (2)

Notice the definitional distinction from IVPs: in this case the
prescribed conditions for u(x) are not at an initial instance in time,
but instead enforce that u satisfy conditions at the boundary points
x = a and x = b. Let us make this distinction clear:

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

It is precisely this distinction from IVPs
that makes BVPs amenable to solution
strategies besides finite difference
methods, which are based on local
interpolation. While finite difference
methods work well for these types of
problems, the presence of boundary
conditions that define the solution
globally makes global approaches
suitable candidates for BVPs. By
contrast, the dynamical evolution of
an IVP from an initial condition makes
the local-interpolation-based finite
difference method by far the most
common numerical framework for IVPs.

1.1 The Poisson problem

In the next two lectures, we will consider the specific case of (1)
where a = 1 and b = g = 0. This is called the 1D Poisson problem,

Lecture 15
Finite difference methods for boundary value prob-
lems

In the last several lectures, we considered finite difference methods
for initial value problems. We will transition in this lecture to nu-
merical methods for boundary value problems (BVPs). We will focus
this week on finite difference methods for BVPs. Just as we saw for
IVPs, finite difference methods for BVPS are based on local interpo-
lation. This connection makes them a natural segue from our IVP
discussion. Next week, we will consider a different class of numerical
methods for BVPs referred to as spectral methods. By contrast with
the interpolation-based finite difference method, spectral methods are
based on least-squares approximation of the solution to the BVP.

The distinction between finite differ-
ence methods and spectral methods is
analogous to the difference between
interpolation and least squares approxi-
mation for functions, which we covered
earlier this semester.

1 Boundary value problems

Before diving into finite difference methods for BVPs, we first take a
moment to review what defines this type of differential equation in
the first place. The BVPs we will consider are of the form

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (1)

for real constants a and b, g, boundary points a and b (a < b), and
some prescribed forcing f (x). BVPs are fully defined by augmenting
the differential equation (1) with boundary conditions. For now, we will
consider the so-called Dirichlet boundary conditions

Can you write down another set of
admissable boundary conditions for
this 1D problem?

u(a) = ua, u(b) = ub (2)

Notice the definitional distinction from IVPs: in this case the
prescribed conditions for u(x) are not at an initial instance in time,
but instead enforce that u satisfy conditions at the boundary points
x = a and x = b. Let us make this distinction clear:

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

It is precisely this distinction from IVPs
that makes BVPs amenable to solution
strategies besides finite difference
methods, which are based on local
interpolation. While finite difference
methods work well for these types of
problems, the presence of boundary
conditions that define the solution
globally makes global approaches
suitable candidates for BVPs. By
contrast, the dynamical evolution of
an IVP from an initial condition makes
the local-interpolation-based finite
difference method by far the most
common numerical framework for IVPs.

1.1 The Poisson problem

In the next two lectures, we will consider the specific case of (1)
where a = 1 and b = g = 0. This is called the 1D Poisson problem,

Key difference from IVPs: instead of an initial condition, BVPs require boundary conditions
on both ends . There are many options, but we will focus on Dirichlet conditions for now
(prescribing the value of the solution at)

a, b
a, b

Lecture 15
Finite difference methods for boundary value prob-
lems

In the last several lectures, we considered finite difference methods
for initial value problems. We will transition in this lecture to nu-
merical methods for boundary value problems (BVPs). We will focus
this week on finite difference methods for BVPs. Just as we saw for
IVPs, finite difference methods for BVPS are based on local interpo-
lation. This connection makes them a natural segue from our IVP
discussion. Next week, we will consider a different class of numerical
methods for BVPs referred to as spectral methods. By contrast with
the interpolation-based finite difference method, spectral methods are
based on least-squares approximation of the solution to the BVP.

The distinction between finite differ-
ence methods and spectral methods is
analogous to the difference between
interpolation and least squares approxi-
mation for functions, which we covered
earlier this semester.

1 Boundary value problems

Before diving into finite difference methods for BVPs, we first take a
moment to review what defines this type of differential equation in
the first place. The BVPs we will consider are of the form

a
d2u
dx2 + b

du
dx

+ gu = f , x 2 [a, b] (1)

for real constants a and b, g, boundary points a and b (a < b), and
some prescribed forcing f (x). BVPs are fully defined by augmenting
the differential equation (1) with boundary conditions. For now, we will
consider the so-called Dirichlet boundary conditions

Can you write down another set of
admissable boundary conditions for
this 1D problem?

u(a) = ua, u(b) = ub (2)

Notice the definitional distinction from IVPs: in this case the
prescribed conditions for u(x) are not at an initial instance in time,
but instead enforce that u satisfy conditions at the boundary points
x = a and x = b. Let us make this distinction clear:

Philosophy behind BVPs

Whereas IVPs describe the dynamical response of a system to
stimuli/initial conditions, BVPs describe the steady state (or
equilibrium) response of a system to forcing.

It is precisely this distinction from IVPs
that makes BVPs amenable to solution
strategies besides finite difference
methods, which are based on local
interpolation. While finite difference
methods work well for these types of
problems, the presence of boundary
conditions that define the solution
globally makes global approaches
suitable candidates for BVPs. By
contrast, the dynamical evolution of
an IVP from an initial condition makes
the local-interpolation-based finite
difference method by far the most
common numerical framework for IVPs.

1.1 The Poisson problem

In the next two lectures, we will consider the specific case of (1)
where a = 1 and b = g = 0. This is called the 1D Poisson problem,

These are given/prescribed

A simple example BVP:
the 1D Poisson problem

4

We will focus in many of our lectures on developing our numerical method against the
simple case when :α = 1, β = 0, γ = 0

(with appropriate boundary conditions, BCs, such as Dirichlet conditions)

This has a known analytical solution (just integrate both sides twice!)

 useful test bed for developing and checking our numerical techniques!⟹

lecture 15 finite difference methods for boundary value problems 2

and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference

(*)

Finite difference (FD) methods for BVPs:
Discretizing the domain

5

lecture 15 finite difference methods for boundary value problems 2

and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference

lecture 15 finite difference methods for boundary value problems 2

and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference

Create a uniformly distributed set of points:

Brain teaser: should we be scared about using uniformly spaced points?
No! We are using local interpolation, which means we will be dealing with low-degree polynomials

If we were using global interpolation, and requiring high-degree polynomials, this uniform distribution would be problematic

FD methods for BVPs:
Approximating the unknown solution with polynomial interpolation

6

We will approximate locally using a order polynomial.u(x) pth

For each , we therefore need points to define the interpolant.xj p + 1

That is, represent as a degree- polynomial at each discrete point, u(x) p
xj, j = 1,…, n + 1

We will pick points in addition to , centered around p xj xj

lecture 15 finite difference methods for boundary value problems 2

and is given by
d2u
dx2 = f , x 2 [a, b] (3)

(We will continue to use the boundary conditions (2) to fully define
the BVP).

Notice that we do not need a numerical
method to solve this problem: the exact
solution can be obtained by integrating
(3) twice. However, this will give us an
approachable setting within which to
develop our numerical tools. We will
then consider increasingly complex
problems where analytical solutions are
harder to come by.

The use of this specific BVP will make it easier to derive and
characterize the error of various methods. However, the methods we
derive for the Poisson problem extend straightforwardly to the more
general differential equation (1).

2 Finite difference methods for BVPs

2.1 Discretizing the domain

The first thing that we need to develop our method is a set of inter-
polation points. How should we define these points? The simplest
approach is to uniformly distribute them over the interval [a, b],
and this is what we will do. The discrete points under this uniform
distribution are defined by

xj = a +
(b � a)(j � 1)

n
, j = 1, . . . , n + 1 (4)

Figure 1: A schematic of the uniform
point distribution we are considering.

Nonuniform point spacings are of course possible, and can some-
times be useful (e.g., perhaps there is some fine-scale behavior in a
subregion of [a, b] that warrants tightly spaced points, whereas the
solution is expected to behave more smoothly in other regions of
[a, b]). The problems we will consider do not need this added layer
of complexity. In any case, the ensuing derivation is applicable to
the nonuniform point spacings, though the arithmetic becomes more
cumbersome.

2.2 Approximating the solution with local interpolation

Finite difference methods use local interpolation. That is, for each
interpolation point xj, we will approximate u(x) using a piecewise-
defined pth-order polynomial. We will first develop the finite differ-
ence method for a general pth-order polynomial. After this, we will
develop a second-order finite difference method as a specific example
of the more general case.

Notice that this centered selection of
points requires that p/2 is an integer: p
must be even. If we desired to use an
odd-valued p, we would have to use a
non-centered selection of points xj.

We require p + 1 points to uniquely define this polynomial, so
p additional points are needed in addition to xj. We will use the
points {xj�p/2, . . . , xj, . . . , xj+p/2}; i.e., points that are centered about
xj. Finite difference methods constructed from this collection of
points are called centered difference methods. Other point choices
are possible and used in practice. For example, a one-sided difference

Note: requires is even!p

Centered interpolation points are
very common, but not the only
option. E.g., could look only to the
right of point and get a one side
FD method

p

Leads to a class of FD methods
called centered FD methods

How do we represent as a degree polynomial at these points?u(x) p p + 1
Represent as an expansion in the Lagrange basis in terms of unknown coefficients that
we will solve for!

Same approach as in
function approximation!

But… we will use a different polynomial for each point, so we will need to change
our notation for the Lagrange basis functions a bit…

xj

FD methods for BVPs:
Defining the Lagrange basis functions centered at xj

7

lecture 15 finite difference methods for boundary value problems 3

method could be obtained by, e.g., using the points {xj, . . . , xj+p}.
Indeed, many combinations of points are possible, and there are
advantages and disadvantages to the various choices. We will focus
on centered methods in this class, but be aware that other methods
exist and may be obtained through non-centered point selections.

This centered definition of points is not
necessarily valid near the boundary
points a and b. For example, if p = 2
then the points used to define the
Lagrange polynomials about x1 should
in principle be {x0, x1, x2}. This is
impossible, since x0 is undefined.
This cues us into the important fact
that points near boundaries must be
handled with care. We will not worry
about this detail for now (we will
address it later when we consider the
2nd order finite difference method).

Now that we have the p + 1 necessary points to define our poly-
nomial at a given xj, how do we write the pth order polynomial? We
know using the monomial basis {1, x, x2, . . . , xp} is a bad idea be-
cause of poor conditioning. We will thus return to our Lagrange basis
polynomials. We define the kth Lagrange basis polynomial of order p
associated with the point xj as Notice that the definition of the La-

grange polynomials are different
from before: they now have the super-
script (j) to designate that they are
defined centered with respect to xj. Let
us consider an example. Say that we
want to build a polynomial of order
2 centered at x5. There are three as-
sociated Lagrange basis polynomials:
L(5)

4 (x), L(5)
5 (x), L(5)

6 (x). We can write
out L(5)

4 (x) explicitly as

L(5)
4 (x) =

(x � x5)(x � x6)
(x4 � x5)(x4 � x6)

This is indeed a 2nd order polynomial:
the leading order term in the numerator
is x2 and the denominator is just a
constant equal to 2Dx2, where Dx is the
spacing between two adjacent discrete
points. Can you write out L(5)

5 and
confirm that it is also a second order
polynomial?

L(j)
k (x) =

j+p/2

’
m=j�p/2
(m 6=k)

x � xm
xk � xm

(5)

for k = j � p/2, . . . , j, . . . , j + p/2.
Each of these Lagrange basis polynomials is a pth order polyno-

mial, so any linear combination of them is also a pth order polyno-
mial. We will therefore approximate u(x) over the interval xj�p/2 
x  xj+p/2 as

u(x) ⇡
j+p/2

Â
i=j�p/2

ciL
(j)
i (x) (6)

Notice that in this piecewise representation of our numerical solution,
as the index j changes, so too does our approximation interval and
expression for u(x)!

The aim: determining the unknown coefficients
Now that we have an expression for how we will approximate the

exact solution u(x), what remains is for us to solve for the unknown
coefficients ci. This will give us a way to evaluate our approximate so-
lution ua(x) near (and at) each point xj, as desired. Before discussing
the computation of these coefficients, let us recall an observation:
from (5), we see that L(j)

i (xk) = 1 if i = k and is equal to 0 if i 6= k.
Using this fact and evaluating (5) at xj, we see that over the interval
xj�p/2  x  xj+p/2:

An example is again useful here:
returning to the 2nd order polynomials
about x5, we have that L(5)

4 (x4) = 1,
L(5)

4 (x5) = L(5)
4 (x6) = 0. Can you

determine what the analogous answers
are for L(5)

5 and L(5)
6 ?u(xj) ⇡

j+p/2

Â
i=j�p/2

ciL
(j)
i (xj)

= cj

(7)

That is, cj is an approximation of u(xj). Thus, for finite difference
methods we may write

u(x) ⇡
j+p/2

Â
i=j�p/2

uiL
(j)
i (x) (8)

lecture 15 finite difference methods for boundary value problems 3

method could be obtained by, e.g., using the points {xj, . . . , xj+p}.
Indeed, many combinations of points are possible, and there are
advantages and disadvantages to the various choices. We will focus
on centered methods in this class, but be aware that other methods
exist and may be obtained through non-centered point selections.

This centered definition of points is not
necessarily valid near the boundary
points a and b. For example, if p = 2
then the points used to define the
Lagrange polynomials about x1 should
in principle be {x0, x1, x2}. This is
impossible, since x0 is undefined.
This cues us into the important fact
that points near boundaries must be
handled with care. We will not worry
about this detail for now (we will
address it later when we consider the
2nd order finite difference method).

Now that we have the p + 1 necessary points to define our poly-
nomial at a given xj, how do we write the pth order polynomial? We
know using the monomial basis {1, x, x2, . . . , xp} is a bad idea be-
cause of poor conditioning. We will thus return to our Lagrange basis
polynomials. We define the kth Lagrange basis polynomial of order p
associated with the point xj as Notice that the definition of the La-

grange polynomials are different
from before: they now have the super-
script (j) to designate that they are
defined centered with respect to xj. Let
us consider an example. Say that we
want to build a polynomial of order
2 centered at x5. There are three as-
sociated Lagrange basis polynomials:
L(5)

4 (x), L(5)
5 (x), L(5)

6 (x). We can write
out L(5)

4 (x) explicitly as

L(5)
4 (x) =

(x � x5)(x � x6)
(x4 � x5)(x4 � x6)

This is indeed a 2nd order polynomial:
the leading order term in the numerator
is x2 and the denominator is just a
constant equal to 2Dx2, where Dx is the
spacing between two adjacent discrete
points. Can you write out L(5)

5 and
confirm that it is also a second order
polynomial?

L(j)
k (x) =

j+p/2

’
m=j�p/2
(m 6=k)

x � xm
xk � xm

(5)

for k = j � p/2, . . . , j, . . . , j + p/2.
Each of these Lagrange basis polynomials is a pth order polyno-

mial, so any linear combination of them is also a pth order polyno-
mial. We will therefore approximate u(x) over the interval xj�p/2 
x  xj+p/2 as

u(x) ⇡
j+p/2

Â
i=j�p/2

ciL
(j)
i (x) (6)

Notice that in this piecewise representation of our numerical solution,
as the index j changes, so too does our approximation interval and
expression for u(x)!

The aim: determining the unknown coefficients
Now that we have an expression for how we will approximate the

exact solution u(x), what remains is for us to solve for the unknown
coefficients ci. This will give us a way to evaluate our approximate so-
lution ua(x) near (and at) each point xj, as desired. Before discussing
the computation of these coefficients, let us recall an observation:
from (5), we see that L(j)

i (xk) = 1 if i = k and is equal to 0 if i 6= k.
Using this fact and evaluating (5) at xj, we see that over the interval
xj�p/2  x  xj+p/2:

An example is again useful here:
returning to the 2nd order polynomials
about x5, we have that L(5)

4 (x4) = 1,
L(5)

4 (x5) = L(5)
4 (x6) = 0. Can you

determine what the analogous answers
are for L(5)

5 and L(5)
6 ?u(xj) ⇡

j+p/2

Â
i=j�p/2

ciL
(j)
i (xj)

= cj

(7)

That is, cj is an approximation of u(xj). Thus, for finite difference
methods we may write

u(x) ⇡
j+p/2

Â
i=j�p/2

uiL
(j)
i (x) (8)

Same general structure as the old
formula, but with some differences…

The means this Lagrange function is
centered at

(j)
xj

Bounds on the product indices do not
go from 1 to , and only involve the
points used to locally interpolate at

n + 1
u xj

 we call the Lagrange function centered at ⟹ L(j)
k kth xj

Same comment for the indicesk

These formulae are always scary to work with at first. Let’s take an example:
If we wanted to interpolate locally as a order polynomial about a point , we
would write

u(x) 2nd x5

u(x) = c4L(5)
4 (x) + c5L(5)

5 (x) + c6L(5)
6 (x)

for some unknown constants .c4, c5, c6

And we can write out the Lagrange basis functions as

L(5)
4 (x) =

(x − x5)(x − x6)
(x4 − x5)(x4 − x6)

L(5)
5 (x) =

(x − x4)(x − x6)
(x5 − x4)(x5 − x6)

L(5)
6 (x) =

(x − x4)(x − x5)
(x6 − x4)(x6 − x5)

FD methods for BVPs:
Using the Lagrange basis functions to approximate the BVP solution

8

We use the Lagrange basis functions to represent the BVP solution locally about each
in terms of unknown coefficients that we will solve for:

u(x) xj

Note that the unknown coefficients are
 the FD approximation for the

solution
ui,

u(xi)

Why?

Consider evaluating at one of the interpolation points:u(x)

Punchline: the coefficients in the expansion (**) are
the approximate values of at the various
interpolation points!

u

u(xk) ≈
j+p/2

∑
i=j−p/2

ciL
(j)
i (xk)

= ck

Remember, the Lagrange basis functions satisfy

L(j)
i (xk) = {1 i = k

0 else

lecture 15 finite difference methods for boundary value problems 3

method could be obtained by, e.g., using the points {xj, . . . , xj+p}.
Indeed, many combinations of points are possible, and there are
advantages and disadvantages to the various choices. We will focus
on centered methods in this class, but be aware that other methods
exist and may be obtained through non-centered point selections.

This centered definition of points is not
necessarily valid near the boundary
points a and b. For example, if p = 2
then the points used to define the
Lagrange polynomials about x1 should
in principle be {x0, x1, x2}. This is
impossible, since x0 is undefined.
This cues us into the important fact
that points near boundaries must be
handled with care. We will not worry
about this detail for now (we will
address it later when we consider the
2nd order finite difference method).

Now that we have the p + 1 necessary points to define our poly-
nomial at a given xj, how do we write the pth order polynomial? We
know using the monomial basis {1, x, x2, . . . , xp} is a bad idea be-
cause of poor conditioning. We will thus return to our Lagrange basis
polynomials. We define the kth Lagrange basis polynomial of order p
associated with the point xj as Notice that the definition of the La-

grange polynomials are different
from before: they now have the super-
script (j) to designate that they are
defined centered with respect to xj. Let
us consider an example. Say that we
want to build a polynomial of order
2 centered at x5. There are three as-
sociated Lagrange basis polynomials:
L(5)

4 (x), L(5)
5 (x), L(5)

6 (x). We can write
out L(5)

4 (x) explicitly as

L(5)
4 (x) =

(x � x5)(x � x6)
(x4 � x5)(x4 � x6)

This is indeed a 2nd order polynomial:
the leading order term in the numerator
is x2 and the denominator is just a
constant equal to 2Dx2, where Dx is the
spacing between two adjacent discrete
points. Can you write out L(5)

5 and
confirm that it is also a second order
polynomial?

L(j)
k (x) =

j+p/2

’
m=j�p/2
(m 6=k)

x � xm
xk � xm

(5)

for k = j � p/2, . . . , j, . . . , j + p/2.
Each of these Lagrange basis polynomials is a pth order polyno-

mial, so any linear combination of them is also a pth order polyno-
mial. We will therefore approximate u(x) over the interval xj�p/2 
x  xj+p/2 as

u(x) ⇡
j+p/2

Â
i=j�p/2

ciL
(j)
i (x) (6)

Notice that in this piecewise representation of our numerical solution,
as the index j changes, so too does our approximation interval and
expression for u(x)!

The aim: determining the unknown coefficients
Now that we have an expression for how we will approximate the

exact solution u(x), what remains is for us to solve for the unknown
coefficients ci. This will give us a way to evaluate our approximate so-
lution ua(x) near (and at) each point xj, as desired. Before discussing
the computation of these coefficients, let us recall an observation:
from (5), we see that L(j)

i (xk) = 1 if i = k and is equal to 0 if i 6= k.
Using this fact and evaluating (5) at xj, we see that over the interval
xj�p/2  x  xj+p/2:

An example is again useful here:
returning to the 2nd order polynomials
about x5, we have that L(5)

4 (x4) = 1,
L(5)

4 (x5) = L(5)
4 (x6) = 0. Can you

determine what the analogous answers
are for L(5)

5 and L(5)
6 ?u(xj) ⇡

j+p/2

Â
i=j�p/2

ciL
(j)
i (xj)

= cj

(7)

That is, cj is an approximation of u(xj). Thus, for finite difference
methods we may write

u(x) ⇡
j+p/2

Â
i=j�p/2

uiL
(j)
i (x) (8)(for ranging the number of interpolation points)j(**)

FD methods for BVPs:
Solving for the unknown coefficients via the FD equationsu1, …, un+1

9

Plug (**) into the BVP (*) to get

lecture 15 finite difference methods for boundary value problems 4

where ui ⇡ u(xi). Thus, computing the various coefficients bi is
equivalent to calculating the values ui that approximate that exact
solution u at the grid point xi.

This fact should not surprise us: we
found in function interpolation that
when using the Lagrange basis, the
coefficients in the expansion were the
values of function at the interpolation
points!

The finite difference equations
So how do we solve for these ui variables? We approximate u(x)

using (8) over the appropriate x-interval, substitute this expression
into the governing equation (3), and evaluate it at the interpolation
point xj. Doing this gives

Notice the similarities to and distinc-
tions from function interpolation: in
this BVP setting, we are still using inter-
polation. However, in this case, we are
interpolating the BVP rather than some
function that we wish to approximate.

j+p/2

Â
i=j�p/2

ui
d2L(j)

i
dx2

�����
x=xj

= f (xj), j = 2, . . . , n (9)

Solving this set of equations gives us our approximations ui to the Again, do not forget that (9) is not
the full story. We need to incorporate
boundary conditions to get a solvable
system of equations.

exact solution at the ith interpolation point, u(xi).
We have now derived the finite difference method for the 1D

Poisson equation (to within appropriate consideration of boundary
conditions). We derived this method for polynomials of unspecified
order p, and it may not be obvious how to solve for the coefficients
from the relatively abstract equations (9). To provide a more concrete
example, we will consider the specific case of p = 2 next.

2.3 A second order finite difference method

For p = 2, the x-interval over which the numerical solution is
piecewise-defined about a given interpolation point xj is xj�1 
x  xj+1. In addition, the expression (8) reduces to

u(x) ⇡
j+1

Â
i=j�1

uiL
(j)
i (x), j = 2, . . . , n (10)

Notice that we are now taking care to
account for boundary terms: the index
j does not include 1 or n + 1. If j did
include 1, then the index i would run
from 0 to 2, but there is no x0! There
is an analogous line of reasoning for
j = n + 1.

The equations for L(j)
i (x) are also more manageable. For example,

L(j)
j�1(x) =

(x � xj)(x � xj+1)

(xj�1 � xj)(xj�1 � xj+1)

=
1

2Dx2 (x � xj)(x � xj+1)

(11) The other two Lagrange polynomials
associated with the interpolation point
xj are L(j)

j and L(j)
j+1. What are the

expressions for those basis functions?

Recall that we defined Dx = xj � xj�1. Note that since we as-
sumed uniform spacing the specific choice of j does not matter. If the
spacing between points was nonuniform, we would instead use the
notation (Dx)j, though apart from this the ensuing analysis applies to
nonuniform spacing distributions.

Using the expression (11) (and its analogs for L(j)
j and L(j)

j+1), the

This gives an equation for each which we can use to solve for the various
coefficients

xj
u1, …, un+1

This result is for a general . It is very common to pick , so we will consider
that case from here on out…

p p = 2

For :p = 2

And the Lagrange basis functions are more manageable. For example,

lecture 15 finite difference methods for boundary value problems 4

where ui ⇡ u(xi). Thus, computing the various coefficients bi is
equivalent to calculating the values ui that approximate that exact
solution u at the grid point xi.

This fact should not surprise us: we
found in function interpolation that
when using the Lagrange basis, the
coefficients in the expansion were the
values of function at the interpolation
points!

The finite difference equations
So how do we solve for these ui variables? We approximate u(x)

using (8) over the appropriate x-interval, substitute this expression
into the governing equation (3), and evaluate it at the interpolation
point xj. Doing this gives

Notice the similarities to and distinc-
tions from function interpolation: in
this BVP setting, we are still using inter-
polation. However, in this case, we are
interpolating the BVP rather than some
function that we wish to approximate.

j+p/2

Â
i=j�p/2

ui
d2L(j)

i
dx2

�����
x=xj

= f (xj), j = 2, . . . , n (9)

Solving this set of equations gives us our approximations ui to the Again, do not forget that (9) is not
the full story. We need to incorporate
boundary conditions to get a solvable
system of equations.

exact solution at the ith interpolation point, u(xi).
We have now derived the finite difference method for the 1D

Poisson equation (to within appropriate consideration of boundary
conditions). We derived this method for polynomials of unspecified
order p, and it may not be obvious how to solve for the coefficients
from the relatively abstract equations (9). To provide a more concrete
example, we will consider the specific case of p = 2 next.

2.3 A second order finite difference method

For p = 2, the x-interval over which the numerical solution is
piecewise-defined about a given interpolation point xj is xj�1 
x  xj+1. In addition, the expression (8) reduces to

u(x) ⇡
j+1

Â
i=j�1

uiL
(j)
i (x), j = 2, . . . , n (10)

Notice that we are now taking care to
account for boundary terms: the index
j does not include 1 or n + 1. If j did
include 1, then the index i would run
from 0 to 2, but there is no x0! There
is an analogous line of reasoning for
j = n + 1.

The equations for L(j)
i (x) are also more manageable. For example,

L(j)
j�1(x) =

(x � xj)(x � xj+1)

(xj�1 � xj)(xj�1 � xj+1)

=
1

2Dx2 (x � xj)(x � xj+1)

(11) The other two Lagrange polynomials
associated with the interpolation point
xj are L(j)

j and L(j)
j+1. What are the

expressions for those basis functions?

Recall that we defined Dx = xj � xj�1. Note that since we as-
sumed uniform spacing the specific choice of j does not matter. If the
spacing between points was nonuniform, we would instead use the
notation (Dx)j, though apart from this the ensuing analysis applies to
nonuniform spacing distributions.

Using the expression (11) (and its analogs for L(j)
j and L(j)

j+1), the

(**) reduces to

lecture 15 finite difference methods for boundary value problems 4

where ui ⇡ u(xi). Thus, computing the various coefficients bi is
equivalent to calculating the values ui that approximate that exact
solution u at the grid point xi.

This fact should not surprise us: we
found in function interpolation that
when using the Lagrange basis, the
coefficients in the expansion were the
values of function at the interpolation
points!

The finite difference equations
So how do we solve for these ui variables? We approximate u(x)

using (8) over the appropriate x-interval, substitute this expression
into the governing equation (3), and evaluate it at the interpolation
point xj. Doing this gives

Notice the similarities to and distinc-
tions from function interpolation: in
this BVP setting, we are still using inter-
polation. However, in this case, we are
interpolating the BVP rather than some
function that we wish to approximate.

j+p/2

Â
i=j�p/2

ui
d2L(j)

i
dx2

�����
x=xj

= f (xj), j = 2, . . . , n (9)

Solving this set of equations gives us our approximations ui to the Again, do not forget that (9) is not
the full story. We need to incorporate
boundary conditions to get a solvable
system of equations.

exact solution at the ith interpolation point, u(xi).
We have now derived the finite difference method for the 1D

Poisson equation (to within appropriate consideration of boundary
conditions). We derived this method for polynomials of unspecified
order p, and it may not be obvious how to solve for the coefficients
from the relatively abstract equations (9). To provide a more concrete
example, we will consider the specific case of p = 2 next.

2.3 A second order finite difference method

For p = 2, the x-interval over which the numerical solution is
piecewise-defined about a given interpolation point xj is xj�1 
x  xj+1. In addition, the expression (8) reduces to

u(x) ⇡
j+1

Â
i=j�1

uiL
(j)
i (x), j = 2, . . . , n (10)

Notice that we are now taking care to
account for boundary terms: the index
j does not include 1 or n + 1. If j did
include 1, then the index i would run
from 0 to 2, but there is no x0! There
is an analogous line of reasoning for
j = n + 1.

The equations for L(j)
i (x) are also more manageable. For example,

L(j)
j�1(x) =

(x � xj)(x � xj+1)

(xj�1 � xj)(xj�1 � xj+1)

=
1

2Dx2 (x � xj)(x � xj+1)

(11) The other two Lagrange polynomials
associated with the interpolation point
xj are L(j)

j and L(j)
j+1. What are the

expressions for those basis functions?

Recall that we defined Dx = xj � xj�1. Note that since we as-
sumed uniform spacing the specific choice of j does not matter. If the
spacing between points was nonuniform, we would instead use the
notation (Dx)j, though apart from this the ensuing analysis applies to
nonuniform spacing distributions.

Using the expression (11) (and its analogs for L(j)
j and L(j)

j+1), the

(***)

10

FD methods for BVPs:
Solving for the unknown coefficients via the FD equations (cont)u1, …, un+1

lecture 15 finite difference methods for boundary value problems 5

equation for the unknown coefficients ui, (9), becomes

uj�1
d2

dx2

✓
1

2Dx2 (x � xj)(x � xj+1)

◆
+ uj

d2

dx2

✓
� 1

Dx2 (x � xj�1)(x � xj+1)

◆

+uj+1
d2

dx2

✓
1

2Dx2 (x � xj�1)(x � xj)

◆
= f (xj), j = 2, . . . , n

(12)
It is straightforward to compute the second derivative of the

various second-order polynomials in (12). Doing so lets us simplify
(12) to

1
Dx2

�
uj�1 � 2uj + uj+1

�
= f (xj), j = 2, . . . , n (13)

We almost have all the information we need to assemble the matrix
system to solve for the unknowns uj that approximate u(xj): we have
n � 1 equations at our disposal. However, we need two more equations
to arrive at a solvable linear system. These equations will come from
the boundary conditions (2), which we write in our finite difference
setting as

u1 = ua, un+1 = ub (14)

We can now write out the matrix system to solve for the un-
knowns. Combining (13) and (14) gives

1
Dx2

2

666666666664

Dx2

1 �2 1
1 �2 1

.
1 �2 1

1 �2 1
Dx2

3

777777777775

2

666666666664

u1
u2

u3
...

un�1
un

un+1

3

777777777775

=

2

666666666664

ua

f (x2)

f (x3)
...

f (xn�1)

f (xn)

ub

3

777777777775

(15)

We will use the convention in this class
that all unspecified matrix entries are
zero.

We can implement (15) in a computer and arrive at a solution
for the variables u1, . . . , un+1 that approximate the exact solution at
the interpolation points x1, . . . , xn. Before doing this, we make an
observation about the matrix system (15): as written, the first and
last rows represent redundant information. These rows represent
“equations” at the points x1 and xn, respectively, when in fact the
equation at these points is trivial. We already know that u1 = ua,
un+1 = ub. Given this, we can remove these rows (along with the
first and last columns of the matrix), and arrive at a slightly truncated

Plugging this polynomial-based approximation (***) for into (*):u(x)

One can compute the various derivatives of the polynomials to get

We’re almost there! We have equations in terms of the unknowns n − 1 n + 1 u1, …, un+1

But notice that (****) doesn’t hold for or (e.g., when , which
doesn’t exist)

j = 1 j = n + 1 uj−1 = u0 j = 1

lecture 15 finite difference methods for boundary value problems 5

equation for the unknown coefficients ui, (9), becomes

uj�1
d2

dx2

✓
1

2Dx2 (x � xj)(x � xj+1)

◆
+ uj

d2

dx2

✓
� 1

Dx2 (x � xj�1)(x � xj+1)

◆

+uj+1
d2

dx2

✓
1

2Dx2 (x � xj�1)(x � xj)

◆
= f (xj), j = 2, . . . , n

(12)
It is straightforward to compute the second derivative of the

various second-order polynomials in (12). Doing so lets us simplify
(12) to

1
Dx2

�
uj�1 � 2uj + uj+1

�
= f (xj), j = 2, . . . , n (13)

We almost have all the information we need to assemble the matrix
system to solve for the unknowns uj that approximate u(xj): we have
n � 1 equations at our disposal. However, we need two more equations
to arrive at a solvable linear system. These equations will come from
the boundary conditions (2), which we write in our finite difference
setting as

u1 = ua, un+1 = ub (14)

We can now write out the matrix system to solve for the un-
knowns. Combining (13) and (14) gives

1
Dx2

2

666666666664

Dx2

1 �2 1
1 �2 1

.
1 �2 1

1 �2 1
Dx2

3

777777777775

2

666666666664

u1
u2

u3
...

un�1
un

un+1

3

777777777775

=

2

666666666664

ua

f (x2)

f (x3)
...

f (xn�1)

f (xn)

ub

3

777777777775

(15)

We will use the convention in this class
that all unspecified matrix entries are
zero.

We can implement (15) in a computer and arrive at a solution
for the variables u1, . . . , un+1 that approximate the exact solution at
the interpolation points x1, . . . , xn. Before doing this, we make an
observation about the matrix system (15): as written, the first and
last rows represent redundant information. These rows represent
“equations” at the points x1 and xn, respectively, when in fact the
equation at these points is trivial. We already know that u1 = ua,
un+1 = ub. Given this, we can remove these rows (along with the
first and last columns of the matrix), and arrive at a slightly truncated

(****)

We use the boundary conditions (BCs) for the final two unknowns

lecture 15 finite difference methods for boundary value problems 5

equation for the unknown coefficients ui, (9), becomes

uj�1
d2

dx2

✓
1

2Dx2 (x � xj)(x � xj+1)

◆
+ uj

d2

dx2

✓
� 1

Dx2 (x � xj�1)(x � xj+1)

◆

+uj+1
d2

dx2

✓
1

2Dx2 (x � xj�1)(x � xj)

◆
= f (xj), j = 2, . . . , n

(12)
It is straightforward to compute the second derivative of the

various second-order polynomials in (12). Doing so lets us simplify
(12) to

1
Dx2

�
uj�1 � 2uj + uj+1

�
= f (xj), j = 2, . . . , n (13)

We almost have all the information we need to assemble the matrix
system to solve for the unknowns uj that approximate u(xj): we have
n � 1 equations at our disposal. However, we need two more equations
to arrive at a solvable linear system. These equations will come from
the boundary conditions (2), which we write in our finite difference
setting as

u1 = ua, un+1 = ub (14)

We can now write out the matrix system to solve for the un-
knowns. Combining (13) and (14) gives

1
Dx2

2

666666666664

Dx2

1 �2 1
1 �2 1

.
1 �2 1

1 �2 1
Dx2

3

777777777775

2

666666666664

u1
u2

u3
...

un�1
un

un+1

3

777777777775

=

2

666666666664

ua

f (x2)

f (x3)
...

f (xn�1)

f (xn)

ub

3

777777777775

(15)

We will use the convention in this class
that all unspecified matrix entries are
zero.

We can implement (15) in a computer and arrive at a solution
for the variables u1, . . . , un+1 that approximate the exact solution at
the interpolation points x1, . . . , xn. Before doing this, we make an
observation about the matrix system (15): as written, the first and
last rows represent redundant information. These rows represent
“equations” at the points x1 and xn, respectively, when in fact the
equation at these points is trivial. We already know that u1 = ua,
un+1 = ub. Given this, we can remove these rows (along with the
first and last columns of the matrix), and arrive at a slightly truncated

FD methods for BVPs:
Assembling the system of equations to solve for the unknowns

11

We now have equations for the unknowns! We can assemble the equations in
matrix form as

n + 1 n + 1

lecture 15 finite difference methods for boundary value problems 5

equation for the unknown coefficients ui, (9), becomes

uj�1
d2

dx2

✓
1

2Dx2 (x � xj)(x � xj+1)

◆
+ uj

d2

dx2

✓
� 1

Dx2 (x � xj�1)(x � xj+1)

◆

+uj+1
d2

dx2

✓
1

2Dx2 (x � xj�1)(x � xj)

◆
= f (xj), j = 2, . . . , n

(12)
It is straightforward to compute the second derivative of the

various second-order polynomials in (12). Doing so lets us simplify
(12) to

1
Dx2

�
uj�1 � 2uj + uj+1

�
= f (xj), j = 2, . . . , n (13)

We almost have all the information we need to assemble the matrix
system to solve for the unknowns uj that approximate u(xj): we have
n � 1 equations at our disposal. However, we need two more equations
to arrive at a solvable linear system. These equations will come from
the boundary conditions (2), which we write in our finite difference
setting as

u1 = ua, un+1 = ub (14)

We can now write out the matrix system to solve for the un-
knowns. Combining (13) and (14) gives

1
Dx2

2

666666666664

Dx2

1 �2 1
1 �2 1

.
1 �2 1

1 �2 1
Dx2

3

777777777775

2

666666666664

u1
u2

u3
...

un�1
un

un+1

3

777777777775

=

2

666666666664

ua

f (x2)

f (x3)
...

f (xn�1)

f (xn)

ub

3

777777777775

(15)

We will use the convention in this class
that all unspecified matrix entries are
zero.

We can implement (15) in a computer and arrive at a solution
for the variables u1, . . . , un+1 that approximate the exact solution at
the interpolation points x1, . . . , xn. Before doing this, we make an
observation about the matrix system (15): as written, the first and
last rows represent redundant information. These rows represent
“equations” at the points x1 and xn, respectively, when in fact the
equation at these points is trivial. We already know that u1 = ua,
un+1 = ub. Given this, we can remove these rows (along with the
first and last columns of the matrix), and arrive at a slightly truncated

This is perfectly correct, but a bit unnecessary.
Can remove the first and last rows and columns and rearrange to get

This just says u1 = ua

This just says un+1 = ub

lecture 15 finite difference methods for boundary value problems 6

variant of (15):

1
Dx2

2

6666664

�2 1
1 �2 1

.
1 �2 1

1 �2

3

7777775

2

6666664

u2

u3
...

un�1
un

3

7777775
=

2

6666664

f (x2)� ua
Dx2

f (x3)
...

f (xn�1)

f (xn)� ub
Dx2

3

7777775
(16)

Either of the variants (15) or (16) are valid and will lead to iden-

Can you convince yourself that (15) and
(16) will give identical answers?

tical numerical solutions (to within machine precision). However,
the smaller form (16) can be useful both for analyzing the conver-
gence properties of the method and for developing fast solution
approaches.

A coded example and motivation for understanding con-
vergence

Let us put our new method to the test and work through a specific
problem. We will consider (3) with

f (x) = �4(b � a)p sin(2p(b � a)x)

�4(b � a)2p2x cos(2p(b � a)x)
(17)

The exact solution to this problem is u(x) = x cos(2p(b � a)x), and
the associated boundary conditions are ua = a cos(2p(b � a)a) and
ub = b cos(2p(b � a)b). We will use a = 2 and b = 4, though any
values will work.

How did I arrive at this exact solution?
I chose it: one can arbitrarily choose
any function to be the “exact solution”,
and determine what f (x) and the
boundary conditions must be such
that the desired function is indeed a
solution. This approach is called the
method of manufactured solutions, and is
immensely important to testing new
algorithms and codes.

We can solve for the uj that approximates u(xj) at the various in-
terpolation points using (15) or (16). We adopt the following notation:
the discrete points and numerical solution are collected into a vector
via x̂ = [x1, x2, . . . , xn+1]T and û = [u1, u2, . . . , un+1]T . Notice the
distinction between these vector variables and the scalar-valued exact
solution u(x).

It is clear from the figure that our numerical solution is getting
better as n increases. That is, uj gets closer to u(xj) for j = 1, . . . , n + 1
as n gets larger. We can make this more precise by looking at the
error in the numerical solution. Figure 3 shows the quantity

||u � û||2 (18)

where u is understood to be the element-wise application of the exact
solution u on the interpolation points contained in x̂, and || · ||2 is the
grid function 2-norm defined as

Where did the factor of Dx arise from?
The grid function norm aims to approx-
imate the size of a function over the
domain [a, b]. In a continuous setting,

this quantity would be
qR b

a g2(x)dx.
Notice that this means that the norm
is induced from the inner product
(f , g) =

R b
a f (x)g(x)dx. The grid

function norm mimics this integration
through the factor Dx. Note that for
an r-dimensional problem, the factor
becomes Dxr instead of Dx.

||g||2 :=

vuutDx
n

Â
j=1

g2
j (19)

This is an dimensional system(n + 1) × (n + 1)

This is an dimensional system(n − 1) × (n − 1)

What does it look like to code this up?

12

