Lecture 13: Stiff IVPs

Today:

- Introduce *stiff initial value problems*
 - What makes them challenging to solve numerically?
 - What finite difference methods are used to solve these nasty IVPs?

Stiff IVPs: A motivating problem

Today. We will continue to think about numerically solving IVPs, but we will consider a specific class of IVPs called *stiff* IVPs

To motivate what makes *stiff IVPs* tricky, consider this seemingly benign problem:

Solve the pesky IVP with the trapezoid method & Heun's method

The *error* at t = 8 associated with solving the IVP via the two methods is:

Δt	Heun's method	trapezoid method
0.5	$8.28 imes10^{48}$	0.169
0.25	$1.65 imes10^{78}$	5.26×10^{-3}
0.1	$1.08 imes10^{128}$	$6.40 imes10^{-4}$
0.05	$6.81 imes10^{146}$	$1.60 imes10^{-4}$
0.025	$1.023 imes10^{64}$	$4.00 imes10^{-5}$
0.01	$1.28 imes 10^{-5}$	$6.41 imes 10^{-6}$

Um, what?! Some notes:

- (A)Remember the stability regions for Heun's and trapezoid:Seems like stability is playing a role here
- (B) The fact that we can only get either 10⁶⁴ or 10⁻⁵ error with Heun's, without wiggle room in between, is *not comforting*

How do we understand this phenomenon?

Understanding why stiff problems are hard: Rewriting our pesky IVP in 1st order form

Notice that we can rewrite the system in 1st order form (only involving 1st derivatives in time) by defining $\mathbf{z} = [y_1, \dot{y}_1, y_2, \dot{y}_2]^T$

Then we have

where

$$\dot{z} = Az$$

 $z(0) = z_0$
 $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -k_1 & -c_1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -k_2 & -c_2 \end{bmatrix}$
 $z_0 = [\gamma_1, 0, \gamma_2, 0]^T$

⁶ This conversion to 1st order form is important, because our finite difference methods were - derived assuming this form (i.e., without using the second derivatives).

⁴ But we can do more! Notice that we can recast this further into the form of the model problem $\dot{u} = \Lambda u$ that we used in defining absolute stability. The key is the ³ eigendecomposition of $\mathbf{A}, \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$:

Understanding why stiff problems are hard: probing the solution to the model problem

And therefore the solution to the problem $\dot{u} = \Lambda u$ is

Remember that d_1 , d_2 , d_3 , and d_4 are just initial condition values. So in general they can all have some nonzero value

$$u = \begin{bmatrix} e^{(-0.005+1i)t}d_1 \\ e^{(-0.005-1i)t}d_2 \\ e^{-1.01t}d_3 \\ e^{-98.99t}d_4 \end{bmatrix}$$

This term doesn't matter for the dynamics (it decays way before the other terms), but it is imposing the stability constraint for Heun's method.

Need to pick a tiny Δt so that $\Delta t \lambda_4$ lies in the stability region.

Not true for trapezoid method. Everything is in the stability region for *any* Δt

Synthesize: what are stiff IVPs?

Defining property of stiff IVPs: there is a term that is *unimportant to the dynamics* but that imposes stability restrictions.

This can be quantified by inspecting the eigenvalues of **A**:

Characterization of stiffness for IVPs

The stiffness of an IVP $\dot{z} = Az$ is characterized by its "stiffness ratio",

$$\mathcal{R}_{s} = \frac{\max_{j=1,\dots,n}(|\lambda_{j}|)}{\min_{j=1,\dots,n}(|\lambda_{j})|}$$
(11)

where *n* is the dimension of the IVP. The IVP is called stiff if $\mathcal{R}_s \gg 1$.

Synthesize:

What implications does "stiffness" have in picking a numerical method?

How to solve stiff IVPs numerically: pick a FD method with large stability regions. The trapezoid method is a good option, but it is only 2nd order accurate. Another class of multi-step methods for stiff IVPs is the Backwards Differentiation Formulae (BDF). Here are some of these methods for different numbers of steps:

1-STEP BDF METHOD (BACKWARDS EULER):

$$\boldsymbol{u}_{k+1} - \boldsymbol{u}_k = \Delta t \boldsymbol{f}(\boldsymbol{u}_{k+1}, \boldsymbol{t}_{k+1})$$

2-STEP BDF METHOD:

$$3u_{k+1} - 4u_k + u_{k-1} = 2\Delta t f(u_{k+1}, t_{k+1})$$

3-STEP BDF METHOD:

