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Lecture 13: Stiff IVPs

Today:

• Introduce stiff initial value problems
• What makes them challenging to solve numerically?
• What finite difference methods are used to solve these nasty 

IVPs?
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Stiff IVPs: A motivating problem
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Today. We will continue to think about numerically solving IVPs, but we will consider a 
specific class of IVPs called stiff IVPs

To motivate what makes stiff IVPs tricky, consider this seemingly benign problem:

Initial value problems: stiff IVPs

We now have the primary tools for solving initial value problems
with finite difference methods. We can implement as well as charac-
terize the error and stability of a variety of one-step and multi-step
methods.

We close our investigations into finite difference methods for
initial value problems by considering stiff problems. These problems
provide a special set of difficulties that are worth discussing. These
problems also highlight the importance of understanding absolute
stability regions of numerical methods for IVPs.

In this lecture, we will characterize stiff problems, understand
what makes them challenging to solve numerically, and discuss finite
difference methods that are used for this special class of initial value
problem.

1 A stiff problem

Let us motivate our investigation into stiff IVPs by considering an
example problem. We will study a system of two damped harmonic
oscillators:

ÿ1 + c1ẏ1 + k1y1 = 0

ÿ2 + c2ẏ2 + k2y2 = 0
(1)

with initial conditions y1(0) = g1, ẏ1(0) = 0, y2(0) = g2, ẏ2(0) = 0.

Note that we can write this system
in first-order form by defining z =
[y1, ẏ1, y2, ẏ2]T and writing

.z = Az

z(0) = z0
(2)

where

A =

2

664

0 1 0 0
�k1 �c1 0 0

0 0 0 1
0 0 �k2 �c2

3

775 (3)

and z0 = [g1, 0, g2, 0]T .
We will select k1 = 1, c1 = 1 ⇥ 10�2, k2 = 100, c2 = 100, g1 = 0.1,

and g2 = 0.6. Figure 1 provides a plot of the solutions y1 and y2.

Figure 1: Plot of the solutions to the
damped harmonic oscillator problem.

It is not obvious from the plot that we are in for a challenge when
numerically solving this system: y1 and y2 both look smooth and
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Initial conditions

Parameter values

Here is the solution. Don’t be lulled into a false sense of security…
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So what could possibly be challenging 
about numerically solving this IVP?



Solve the pesky IVP with the trapezoid method & 
Heun’s method

3

initial value problems: stiff ivps 2

decay at modest rates. Do not let this gentle-looking figure deceive
you: here be dragons!

So what is the issue in solving these stiff problems numerically?
Let us investigate this by applying Heun’s method and the trapezoid
method to solve this problem. Both are second order, but recall that
the trapezoid method is absolutely stable over the entire left-half
plane whereas Heun’s method has a much more restricted stability
region (we showed this fact in the last lecture).

Table 1 shows the error in the solution obtained via Heun’s
method and the trapezoid method.

Dt Heun’s method trapezoid method
0.5 8.28 ⇥ 1048 0.169
0.25 1.65 ⇥ 1078 5.26 ⇥ 10�3

0.1 1.08 ⇥ 10128 6.40 ⇥ 10�4

0.05 6.81 ⇥ 10146 1.60 ⇥ 10�4

0.025 1.023 ⇥ 1064 4.00 ⇥ 10�5

0.01 1.28 ⇥ 10�5 6.41 ⇥ 10�6

Table 1: Error at t = 8 for Heun’s
method and the trapezoid method
applied to the stiff problem (1).

The results for Heun’s method are interesting in two ways:

i) Heun’s method is unstable for all but the last value of Dt, which
suggests that the small absolute stability region plays a role in
the admissible time step.

ii) The error jumps from O(1064) to O(10�6). As numericists, we
are often interested in methods that can provide a tolerable
(but not overly small) error. The reason is that we are always
seeking to develop the fastest possible methods, and having an
excessively small error means that we have selected a time step
that is too small, and have thus performed more computations
than needed. How we define a ‘tolerable error’ is problem
dependent, but the fact that we can not obtain an error between
O(1064) and O(10�6) is troubling!

Let us explain i) and ii) in turn. Regarding the unstable com-
putations obtained using Heun’s method for certain values of Dt,
point i): we can quantify the restrictions on Dt by converting the IVP
.z = Az from equation (2) to the diagonal model problem .u = Lu
that we used to determine absolute stability regions in the last lec-
ture. This conversion is performed via the eigendecomposition of
A, A = VLV�1. Thus, the model problem associated with our stiff
system is

.u = Lu (4)

where L is a diagonal matrix containing the eigenvalues of A. The

The procedure for going from (2) to the
diagonal IVP is as follows:

.z = VLV�1z

=) V�1 .z = LV�1z
(5)

Now we define the variable u := V�1z
and note that since V is not a function
of time,

V�1 .z =
.

(V�1z) = .u (6)

from which we obtain
.u = Lu (7)

Notice that the initial condition in
terms of u is V�1z0, which we write as
[d1, d2, d3, d4]T for simplicity.

eigenvalues of A may be computed from your software of choice

The error at  associated with solving the IVP via the two methods is:t = 8

Um, what?! Some notes:
(A)Remember the stability regions for 

Heun’s and trapezoid:
Seems like stability is playing a role here

(B) The fact that we can only get either  
or  error with Heun’s, without 
wiggle room in between, is not 
comforting

1064

10−5

How do we understand this phenomenon?

initial value problems: absolute stability 4

(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as

.u = Lu

u(t0) = u0

where L is the diagonal matrix

L =

2
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0 0 · · · ln�1 0

0 0 · · · 0 ln
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with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt
k+1

Â
j=k�r+1

b j�(k�r+1)Luj (16)

which can be rearranged as

k+1

Â
j=k�r+1


aj�(k�r+1) I � Dtb j�(k�r+1)L

�
uj = 0 (17)

As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
(uj)l = 0 (18)

How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the

Heun’s Trapezoid

Extends to −∞



Understanding why stiff problems are hard:
Rewriting our pesky IVP in 1st order form
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Notice that we can rewrite the system in 1st order form (only involving 1st derivatives in 
time) by defining z =
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This conversion to 1st order form is important, because our finite difference methods were 
derived assuming this form (i.e., without using second derivatives).

But we can do more! Notice that we can recast this further into the form of the model 
problem                 that we used in defining absolute stability. The key is the 
eigendecomposition of  , :A A = VΛV−1

initial value problems: stiff ivps 2

decay at modest rates. Do not let this gentle-looking figure deceive
you: here be dragons!

So what is the issue in solving these stiff problems numerically?
Let us investigate this by applying Heun’s method and the trapezoid
method to solve this problem. Both are second order, but recall that
the trapezoid method is absolutely stable over the entire left-half
plane whereas Heun’s method has a much more restricted stability
region (we showed this fact in the last lecture).

Table 1 shows the error in the solution obtained via Heun’s
method and the trapezoid method.

Dt Heun’s method trapezoid method
0.5 8.28 ⇥ 1048 0.169
0.25 1.65 ⇥ 1078 5.26 ⇥ 10�3

0.1 1.08 ⇥ 10128 6.40 ⇥ 10�4

0.05 6.81 ⇥ 10146 1.60 ⇥ 10�4

0.025 1.023 ⇥ 1064 4.00 ⇥ 10�5

0.01 1.28 ⇥ 10�5 6.41 ⇥ 10�6

Table 1: Error at t = 8 for Heun’s
method and the trapezoid method
applied to the stiff problem (1).

The results for Heun’s method are interesting in two ways:

i) Heun’s method is unstable for all but the last value of Dt, which
suggests that the small absolute stability region plays a role in
the admissible time step.

ii) The error jumps from O(1064) to O(10�6). As numericists, we
are often interested in methods that can provide a tolerable
(but not overly small) error. The reason is that we are always
seeking to develop the fastest possible methods, and having an
excessively small error means that we have selected a time step
that is too small, and have thus performed more computations
than needed. How we define a ‘tolerable error’ is problem
dependent, but the fact that we can not obtain an error between
O(1064) and O(10�6) is troubling!

Let us explain i) and ii) in turn. Regarding the unstable com-
putations obtained using Heun’s method for certain values of Dt,
point i): we can quantify the restrictions on Dt by converting the IVP
.z = Az from equation (2) to the diagonal model problem .u = Lu
that we used to determine absolute stability regions in the last lec-
ture. This conversion is performed via the eigendecomposition of
A, A = VLV�1. Thus, the model problem associated with our stiff
system is

.u = Lu (4)

where L is a diagonal matrix containing the eigenvalues of A. The

The procedure for going from (2) to the
diagonal IVP is as follows:

.z = VLV�1z

=) V�1 .z = LV�1z
(5)

Now we define the variable u := V�1z
and note that since V is not a function
of time,

V�1 .z =
.

(V�1z) = .u (6)

from which we obtain
.u = Lu (7)

Notice that the initial condition in
terms of u is V�1z0, which we write as
[d1, d2, d3, d4]T for simplicity.

eigenvalues of A may be computed from your software of choice
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point i): we can quantify the restrictions on Dt by converting the IVP
.z = Az from equation (2) to the diagonal model problem .u = Lu
that we used to determine absolute stability regions in the last lec-
ture. This conversion is performed via the eigendecomposition of
A, A = VLV�1. Thus, the model problem associated with our stiff
system is

.u = Lu (4)

where L is a diagonal matrix containing the eigenvalues of A. The

The procedure for going from (2) to the
diagonal IVP is as follows:

.z = VLV�1z

=) V�1 .z = LV�1z
(5)

Now we define the variable u := V�1z
and note that since V is not a function
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from which we obtain
.u = Lu (7)

Notice that the initial condition in
terms of u is V�1z0, which we write as
[d1, d2, d3, d4]T for simplicity.

eigenvalues of A may be computed from your software of choice
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Now define u = V−1z
And since  is not a function of time, V

V−1 ·z =
·

(V−1z) = ·u

⟹
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Notice that we also have the initial condition . 
Let’s just call this vector 

u(t = 0) = V−1z0
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Understanding why stiff problems are hard:
probing the solution to the model problem 

5

We can compute  and  using eig(A)Λ V

From this we have that 

Λ =

−0.005 + i 0 0 0
0 −0.005 − i 0 0
0 0 −1.01 0
0 0 0 −98.99

And therefore the solution to the problem                is 

initial value problems: stiff ivps 3

to be �0.005 ± 1i, �1.01, and �98.99. The first three eigenvalues all
lie within the absolute stability region of Heun’s method for all Dt

values considered, but one could verify through direct computation
that the last lies outside of the region for all but the last value of Dt.

The first point, i), is completely explicable using our framework of
absolute stability. It is point ii), the fact that the stability restriction
makes it impossible to compute modestly accurate solutions with
Heun’s method, that is the hallmark of stiff problems. What is the
reason behind this undesirable behavior? The answer lies in the
eigenvalues of the system.

Notice that the solution to the model problem .u = Lu is

u =

2

6664

e
(�0.005+1i)t

d1
e
(�0.005�1i)t

d2

e
�1.01t

d3

e
�98.99t

d4

3

7775
(8)

Remember that the variables d1, . . . , d4
denote the initial condition z0 ex-
pressed in terms of the eigenvectors.

Then we may obtain the solution in the physical z coordinates via
z = Vu. Writing out V in terms of its columns via

V =

2

64
| | | |

v1 v2 v3 v4
| | | |

3

75 (9)

we have that

z = Vu

=
⇣

e
(�0.005+1i)t

d1

⌘
v1 +

⇣
e
(�0.005�1i)t

d2

⌘
v2

⇣
e
�1.01t

d3

⌘
v3 +

⇣
e
�98.99t

d4

⌘
v4

(10)

Now notice that in the true solution, the e
�98.99t

d4v4 term will de-
cay extremely quickly, so that at any instant in time the solution is
practically described by the first three terms. This is borne out in
figure 1—there are no rapid transients in sight, and the solution is
instead dominated by the smooth behavior contained in the other
three eigenvectors. Yet, it is precisely this pesky fourth term that is
imposing our stability restriction, and thereby requiring for Heun’s
method that we use a time step well below what is needed to capture
the essential behavior of the system. Of course, the trapezoid method
does not contain these issues, as its stability region encompasses the
entire left-half plane. Indeed, we may surmise from this example
problem that methods with large stability regions are better suited to
stiff problems.
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Remember that  and  are just 
initial condition values. So in general they 
can all have some nonzero value

d1, d2, d3, d4
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(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as

.u = Lu

u(t0) = u0

where L is the diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775

with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt
k+1

Â
j=k�r+1

b j�(k�r+1)Luj (16)

which can be rearranged as

k+1

Â
j=k�r+1


aj�(k�r+1) I � Dtb j�(k�r+1)L

�
uj = 0 (17)

As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
(uj)l = 0 (18)

How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the

λ1 λ2
λ3 λ4

λ1

λ2
λ3

λ4 λ1

λ2
λ3

λ4

This term doesn’t matter for the dynamics (it decays way before the other terms), but 
it is imposing the stability constraint for Heun’s method.

Need to pick a tiny  so that  lies in the stability region.Δt Δtλ4
Not true for trapezoid method. Everything is in the stability region for any Δt



Synthesize: 
what are stiff IVPs? 

6

Defining property of stiff IVPs: there is a term that is unimportant to the dynamics 
but that imposes stability restrictions.

initial value problems: stiff ivps 4

2 Characterizing stiff problems

With this example under our belts to ground us, let us characterize
stiff systems more generally.

Characterization of stiffness for IVPs

The stiffness of an IVP .z = Az is characterized by its “stiffness
ratio”,

Rs =
maxj=1,...,n(|lj|)
minj=1,...,n(|lj)|

(11)

where n is the dimension of the IVP. The IVP is called stiff if
Rs � 1.

To extend this definition to nonlinear
IVPs, we may consider a Jacobian
matrix A that arises from linearizing the
nonlinear term about some reference
state.

Notice that it is the ratio of the largest to the smallest eigenvalues
that is important. In the motivating example at the beginning of
this lecture, if all of the eigenvalues had been �100, then we would
have required a small time step regardless of our choice of method
for accuracy reasons. This is because in this case the dynamics of the
system are actually occurring quickly and must be resolved.

The crux of a stiff system is that the dynamics of interest are evolv-
ing slowly relative to some fast time scale. It is for these problems
that methods with small absolute stability regions have severe time
step restrictions that are not coincident with the time step size one
would want to use to accurately resolve the relatively slow dynamics
that govern the actual system response.

3 Finite difference methods for stiff problems

As we already discovered, a key feature to efficiently simulating
stiff IVPs is to select a method with a large stability region. The
backwards Euler method and trapezoid method are therefore good
choices for solving stiff problems.

There are another class of methods, backwards differentiation
formula (BDF) methods, that are well-suited to stiff problems. BDF
methods are multi-step methods that are derived directly from
the differential form of the IVP .u = f (u, t), rather than from the
integrated form

R
tk+1

tk

.u(t) dt =
R

tk+1
tk

f (u(t), t) dt. Specifically, an
r-step BDF may be derived by writing

.u(tk+1) = f (u(tk+1), tk+1) (12)

and expressing u(t) as a degree r + 1 polynomial using the Lagrange
basis functions that we have come to know and love. Evaluating
the polynomial approximation of u(t) at t = tk+1 leads to a finite

This can be quantified by inspecting the eigenvalues of :A



Synthesize: 
What implications does “stiffness” have in picking a numerical method?

7

How to solve stiff IVPs numerically: pick a FD method with large stability regions. 
The trapezoid method is a good option, but it is only 2nd order accurate. Another 
class of multi-step methods for stiff IVPs is the Backwards Differentiation Formulae 
(BDF). Here are some of these methods for different numbers of steps:

initial value problems: stiff ivps 5

difference formula

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dtbr f (uk+1, tk+1) (13)

That is, b0 = b1 = · · · = br�1 = 0.
We will discuss why these methods are valuable for stiff problems

in a moment, but let us first consider some examples:
1-step BDF method (Backwards Euler):

uk+1 � uk = Dt f (uk+1, tk+1) (14)

2-step BDF method:

3uk+1 � 4uk + uk�1 = 2Dt f (uk+1, tk+1) (15)

3-step BDF method:

11uk+1 � 18uk + 9uk�1 � 2uk�2 = 6Dt f (uk+1, tk+1) (16)

4-step BDF method:

25uk+1 � 48uk + 36uk�1 � 16uk�2 + 3uk�2 = 12Dt f (uk+1, tk+1) (17)

Why are these methods useful for stiff problems? Figure 2 demon-
strates the absolute stability regions for BDF-2, BDF-3, and BDF-4
(the plot for BDF-1, the backwards Euler method, is in the previous
lecture).

(a) (b) (c)

Figure 2: Stability region for the 2-
step (a), 3-step (b), and 4-step (c) BDF
methods. Note the larger scale of
the axes compared with the absolute
stability plots provided in previous
lectures. This is done to more easily
visualize the stability regions of these
BDF methods.

The figure demonstrates that the core utility of BDF methods for
stiff IVPs is in their expansive absolute stability regions. Why is it
that these methods possess such desirable stability properties? We
may intuit the answer by considering the stability of these methods in
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