
BRAND ARCHITECTURE
Block I Logo & Illinois Wordmark | Version 2.0

Lecture 12: Error in IVPs

Today:

• Discuss error in finite-difference methods for IVPs

• Characterize truncation error

• Characterize stability

1

Characterizing the error of one-step

and multi-step methods

2

We previously derived one-step and multi-step finite-difference methods for solving IVPs.

Let’s now transition to an important question: what is the error associated with these
methods?

lecture 12 initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

There are two contributions to the global error: the truncation error advancing from one time
step to the next, and the accumulated error over all past time steps.

The truncation error associated with advancing from one time step to the next

The accumulated error over all past time steps.

We will build intuition for these, and then consider the truncation error in more detail.

BRAND ARCHITECTURE
Block I Logo & Illinois Wordmark | Version 2.0

3

Truncation Error

Building intuition for the sources of error

with the Forward Euler method

4

To see what the two sources of error are, consider the FE method.

The truncation error is the error associated with applying the numerical method to the
true solution

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

We’re using the true solution
here, not , uk uk+1

This error comes from the fact that even if we started with the perfect solution at
, we would incur some error in getting our approximation at u(tk) t = tk+1

The accumulation error is the collection of the truncation errors over all previous time
steps, not just in going from to tk tk+1

Let’s now consider how to quantify the truncation error for one-step and multi-step methods

uk+1 − uk = Δtf(uk, tk)

FE method

Quantifying the truncation error (TE) for one-step
methods

5

Let’s quantify the TE for the FE method first

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

initial value problems: multi-step methods and truncation error 4

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) � uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + Dt f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment Dt.

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk) (10)

Note that many other texts define
the truncation error by multiplying
our truncation error by Dt. I find that
definition unhelpfully confusing, and
we will use the convention described in
(10).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods
To avoid cumbersome algebra, we will work with the forward

Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

tk =
u(tk+1)� u(tk)

Dt
� f (u(tk), tk)

=
u(tk+1)� u(tk)

Dt
� .u(tk) [using the definition of an IVP]

=
u(tk+1)� u(tk)

Dt
� u(tk+1)� u(tk)

Dt
+ O(Dt)

[using a Taylor series expansion of u(tk) about tk+1]

=) tk = O(Dt)
(11)

u(tk+1) = u(tk) + ·u(tk)
(tk+1 − tk)

1!
+ ··u(tk)

(tk+1 − tk)2

2!
+ …

⟹ ·u(tk) =
u(tk+1) − u(tk)

Δt
+ ··u(tk)

Δt
2

+ …

= u(tk) + ·u(tk)Δt + ··u(tk)
(Δt)2

2
+ …

=
u(tk+1) − u(tk)

Δt
+ O(Δt)

Big O notation

where is some constant

··u(tk)
Δt
2

+ … ≤ MΔt as Δt → 0

M

An exercise with truncation error of one-step methods

6

Exercise. Write out the TE for the Backward Euler method and Heun’s method

τk =
u(tk+1) − u(tk)

Δt
− f(u(tk+1), tk+1)

τk =
u(tk+1) − u(tk)

Δt
−

1
2 [f(u(tk), tk) + f(u(tk) + Δtf(u(tk), tk), tk)]

BE

Heun’s

Exercise. Quantify the TE for the Backward Euler method

τk =
u(tk+1) − u(tk)

Δt
− f(u(tk+1), tk+1)

τk =
u(tk+1) − u(tk)

Δt
− ·u(tk+1)

τk =
u(tk+1) − u(tk)

Δt
−

u(tk+1) − u(tk)
Δt

− ··u(tk+1)
Δt
2

+ …

Notice that u(tk) = u(tk+1) − ·u(tk+1)Δt + ··u(tk+1)
Δt2

2
+ …

⟹ ·u(tk+1) =
u(tk+1) − u(tk)

Δt
+ ··u(tk+1)

Δt
2

+ …

⟹ τk = O(Δt)

Constructing and quantifying TE for multi-step
methods

7

Whereas for one-step methods the TE has to be constructed on a case by case basis, the
procedure is more generic for multi-step methods…

initial value problems: multi-step methods and truncation error 5

One can use an analogous process to show that Heun’s method
has a truncation error tk = O(Dt

2) and the four-stage Runge-Kutta
method has a truncation error tk = O(Dt

4).
Test yourself by deriving the scaling of
the truncation error for Heun’s method.

Truncation error: multi-step methods
One difference between one-step and multi-step methods is that

the truncation error is easier to define generally for multi-step meth-
ods, since multi-step methods can be readily cast in the form (9).
Given this fact, we can write the truncation error as

Truncation error: multi-step methods

An r-step method defined using (9) has a truncation error
given by

tk =
1

Dt

"
k+1

Â
j=k�r+1

aj�(k�r+1)u(tj)�

Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f
⇣

u(tj), tj

⌘# (12) This definition is entirely analogous to
our definition for one-step methods:
the truncation error remains the error
associated with advancing the exact
solution one time step using the finite-
difference method.

The general definition (9) also enables a clean derivation of the
truncation error. Noting that f

⇣
u(tj), tj

⌘
=

.u(tj), and that

u(tj) = u(tk) + (j � k)Dt
.u(tj) +

1
2
(j � k)2Dt

2 ..u(tj) + · · ·

.u(tj) =
.u(tk) + (j � k)Dt

..u(tj) +
1
2
(j � k)2Dt

2 ...u(tj) + · · ·
(13)

the truncation error becomes

tk =
1

Dt

k+1

Â
j=k�r+1

aj�(k�r+1)

!
u(tk) +

k+1

Â
j=k�r+1


(j � k)aj�(k�r+1) � b j�(k�r+1)

�!
.u(tk)+

Dt

k+1

Â
j=k�r+1


1
2
(j � k)2aj�(k�r+1) � (j � k)b j�(k�r+1)

�!
..u(tk) + · · ·+

Dt
q�1

k+1

Â
j=k�r+1


1
q!
(j � k)qaj�(k�r+1) �

1
(q � 1)!

(j � k)q�1b j�(k�r+1)

�!
d

qu
dtq

���
tk

(14)
In order for a multi-step method to converge, we must have that

tk ! 0 as Dt ! 0. From (14), it is clear that for this condition to be
satisfied, we require (at minimum)

A multi-step method that satisfies (15)
is called consistent.

k+1

Â
j=k�r+1

aj�(k�r+1) = 0,
k+1

Â
j=k�r+1


(j � k)aj�(k�r+1) � b j�(k�r+1)

�
= 0

(15)

The truncation error can be quantified through different Taylor series (see the typed notes):

initial value problems: multi-step methods and truncation error 5

One can use an analogous process to show that Heun’s method
has a truncation error tk = O(Dt

2) and the four-stage Runge-Kutta
method has a truncation error tk = O(Dt

4).
Test yourself by deriving the scaling of
the truncation error for Heun’s method.

Truncation error: multi-step methods
One difference between one-step and multi-step methods is that

the truncation error is easier to define generally for multi-step meth-
ods, since multi-step methods can be readily cast in the form (9).
Given this fact, we can write the truncation error as

Truncation error: multi-step methods

An r-step method defined using (9) has a truncation error
given by

tk =
1

Dt

"
k+1

Â
j=k�r+1

aj�(k�r+1)u(tj)�

Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f
⇣

u(tj), tj

⌘# (12) This definition is entirely analogous to
our definition for one-step methods:
the truncation error remains the error
associated with advancing the exact
solution one time step using the finite-
difference method.

The general definition (9) also enables a clean derivation of the
truncation error. Noting that f

⇣
u(tj), tj

⌘
=

.u(tj), and that

u(tj) = u(tk) + (j � k)Dt
.u(tj) +

1
2
(j � k)2Dt

2 ..u(tj) + · · ·

.u(tj) =
.u(tk) + (j � k)Dt

..u(tj) +
1
2
(j � k)2Dt

2 ...u(tj) + · · ·
(13)

the truncation error becomes

tk =
1

Dt

k+1

Â
j=k�r+1

aj�(k�r+1)

!
u(tk) +

k+1

Â
j=k�r+1


(j � k)aj�(k�r+1) � b j�(k�r+1)

�!
.u(tk)+

Dt

k+1

Â
j=k�r+1


1
2
(j � k)2aj�(k�r+1) � (j � k)b j�(k�r+1)

�!
..u(tk) + · · ·+

Dt
q�1

k+1

Â
j=k�r+1


1
q!
(j � k)qaj�(k�r+1) �

1
(q � 1)!

(j � k)q�1b j�(k�r+1)

�!
d

qu
dtq

���
tk

(14)
In order for a multi-step method to converge, we must have that

tk ! 0 as Dt ! 0. From (14), it is clear that for this condition to be
satisfied, we require (at minimum)

A multi-step method that satisfies (15)
is called consistent.

k+1

Â
j=k�r+1

aj�(k�r+1) = 0,
k+1

Â
j=k�r+1


(j � k)aj�(k�r+1) � b j�(k�r+1)

�
= 0

(15)

If this = 0… and this = 0
⟹ τk = O(Δt)

and this = 0 ⟹ τk = O(Δt2)
(*)

Summary: truncation error for multi-step methods

8

Steps for establishing the truncation error of a multi-step method:

(A) The multi-step method will be given to you. From that, figure out the and
coefficients.

α β

(B) Check to see what conditions these coefficients satisfy, and use equation (*) to see if
the method has a truncation error that is , , etc.O(Δt) O(Δt2)

BRAND ARCHITECTURE
Block I Logo & Illinois Wordmark | Version 2.0

9

Accumulated Error

But what about global error?

10

How do we relate the truncation error to the global error that we actually care about?

We introduce the concept of stability…
Remember that the second contribution to the global error was the accumulated error
that accrues over the past time steps.k

We will define a notion of stability that ensures that this error doesn’t grow out of
hand.

Once we have that, we will be able to say that:

A finite difference method for an IVP will converge to the true solution (i.e., the
FD solution will get infinitesimally close to the true solution as) if

(A)The truncation error satisfies for (an integer)
(B) The method is stable (we will define this concept later) at .

Δt → 0

τk = O(Δtp) p ≥ 1
Δt = 0

We call a FD method satisfying these properties
“order accurate”p

Building intuition for absolute stability through a
model IVP

11

Let’s start to build intuition for our notion of stability by considering the model problem for
stability

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Why do we allow
complex values of ? See
the side bar of the typed

notes for details!

λ

It turns out that the exact solution to this problem is

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

How will we use this model problem to understand stability?? We will first define stability
for one-step methods, then look at multi-step methods. Let’s consider applying FE to the
problem first.

This solution will decay when or
blow up when . Frequency of

oscillations is given by

Real(λ) < 0
Real(λ) > 0

Imaginary(λ)

th entry of j u0

12

Building intuition for absolute stability: applying
FE to the model IVP

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

Or, looking at the entry specifically:jth

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

What does this mean?

If , then will eventually when becomes large enough|1 + Δtλj | < 1 (uk+1)j → 0 k

If , then will eventually when becomes large enough|1 + Δtλj | > 1 (uk+1)j → ∞ k

Gives a criteria for identifying stability! Our method is absolutely stable if |1 + Δtλj | < 1

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

Stable if is in the orange circleΔtλ

Verify this for yourselves…
Recall that |z | = |x + yi | = (x2 + y2)

Your turn: determine the absolute stability criteria
for the Backward Euler method

13

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

If , then will eventually when becomes large enough1/ |1 − Δtλj | < 1 (uk+1)j → 0 k

If , then will eventually when becomes large enough1/ |1 − Δtλj | > 1 (uk+1)j → ∞ k

Our method is absolutely stable if 1/ |1 − Δtλj | < 1

initial value problems: absolute stability 2

Thus, if |1 + Dtlj| > 1, the iterates (uk+1)j will grow without bound

as k tends to infinity. That is, the numerical solution will blow up

when

q
(1 +R(Dtlj))2 + I(Dtlj)2 > 1, where R(Dtlj) and I(Dtlj)

denote the real and imaginary parts of Dtlj, respectively. Notice that

it is the quantity Dtlj that is important, and not Dt or lj separately,

that determines the stability of a method. We say that the forward

Euler method is absolutely stable when |1 + Dtlj| < 1.

A picture of this might make things

clearer. The forward Euler method is

stable when Dtlj is contained within

the filled in circle, and unstable oth-

erwise. Notice that, by virtue of (3),

the exact solution is stable whenever

R(lj) < 0. This gives us an indication

of the frail stability properties of this

method: if R(lj) << �2, then even

though the true solution will decay in

time, we will have to use a very small

Dt to stably simulate the system.

Figure 1: Absolute stability region for

the forward Euler method.

How does the stability region of the forward Euler method com-

pare with that of other methods we were exposed to earlier? Let us

consider the backward Euler method. When applied to the model

IVP (1), the backward Euler method becomes

uk+1 = uk + DtLuk+1

uk+1 = (I � DtL)�1uk

= [(I � DtL)�1]k+1u0

(11)

For the diagonal matrix L, the jth entry in uk+1 can be expressed

simply as

(uk+1)j =
1

(1 � Dtlj)k+1
(u0)j (12)

A figure is again useful here. Notice

the fruits we have reaped from using

an implicit Euler method: the method

is absolutely stable so long as Dtlj does

not lie in the unit circle centered at

DtR(lj) = 1.

Figure 2: Absolute stability region for

the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1 �
Dtlj| < 1.

We will consider one more example: the RK4 scheme. When

applied to the model problem (1), RK4 can be expressed as

uk+1 = uk +
1

6
Dt

(
Luk + 2L

✓
uk +

1

2
DtLuk

◆
+

2L

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆
+

L


uk + DtL

✓
uk +

1

2
DtL

✓
uk +

1

2
DtLuk

◆◆�)

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�
uk

=

⇢
I + DtL +

1

2
(DtL)2 +

1

6
(DtL)3 +

1

24
(DtL)4

�k+1

u0

(13)

For the RK4 method, the stability region

is larger than for the forward Euler

method but not as extensive as the

backward Euler method.

Figure 3: Absolute stability region for

the RK4 method.

Again, the diagonal nature of L enables a simple representation of

the jth
entry of uk+1:

(uk+1)j =

⇢
1 + Dtlj +

1

2

�
Dtlj

�2
+

1

6

�
Dtlj

�3
+

1

24

�
Dtlj

�4

�k+1

(u0)j

(14)

How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler

The solutions won’t blow up to infinity for a
much wider range of Δtλj

Doesn’t ensure accuracy! Just means the
solutions won’t grow infinitely large

See the typed notes for yet another example
involving RK4

Extends to −∞

General approach to absolute stability
for one-step methods

14

Notice that both FE and BE led to a relationship between and of the form (uk+1)j (u0)j

initial value problems: absolute stability 3

method, backward Euler method, and RK4, we were able to relate

(uk+1)j to (u0)j using a function of Dtlj. It turns out that this is true

for one-step methods in general. That is, for one-step methods we

can write (uk+1)j = R(Dtlj)(u0)j. E.g., R(Dtlj) = 1 + Dtlj +
1

2
(Dtlj)2 +

1

6
(Dtlj)3 + 1

24
(Dtlj)4

for RK4.Since it is the quantity Dtlj that is important, and not Dt or lj
separately, it is customary to define w = Dtlj. This allows us to

rewrite the relation between (uk+1)j and (u0)j more succinctly as Note that w 2 C since lj 2 C

(uk+1)j = Rk+1(w)(u0)j (15)

In this notation, a one-step method is stable when |R(w)| < 1. This

gives us a mechanism for computing the stability region of a one-

step method: we need only determine R(w) for the given one-step

method and identify the values of w for which |R(w)| < 1. Here is a

code that plots the stability region for the backward Euler method.

Listing 1: Code snippet for computing the absolute stability region

for the Backward Euler method

%define real and imaginary parts of w

wr = -5 : 0.01 : 3;

wi = -4 : 0.01 : 4 ;

%create meshgrid

[Wr, Wi] = meshgrid(wr, wi);

%define |R(w)| for BE

BE_sc = abs(1./(1 - (Wr + 1i*Wi)));

%saturate values for easier coloring

BE_sc(BE_sc < 1) = 1;

BE_sc(BE_sc > 1) = 2;

%UIUC-themed colormap

cmap = [1 1/2 0; 1 1 1];

%Create a contour plot of the stability region

contourf(Wr, Wi, BE_sc, [1 2])

colormap(cmap), axis equal

For reference, the stability regions of the other methods we ex-

plored in earlier lectures are presented in figure 4.

Let us summarize this important result of absolute stability for one

step methods.

w = λjΔt

Initial value problems: absolute stability

We left the last lecture by stating that the truncation error correctly

determined the accuracy of a numerical method, provided that the

numerical method was stable. We will make this notion of stability

precise in this lecture.

First, why do we need the concept of stability at all? That is, why

is the truncation error not sufficient to predict the accuracy of a

numerical method. The reason is that the truncation error is derived

using a Taylor series, which is only valid for sufficiently small Dt.
To illustrate the dependence of the ‘right Dt’ on the finite-difference

method being considered, we will consider the model problem

.u = Lu

u(t0) = u0

(1)

where L is a diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775
(2)

with each ll 2 C, l = 1, . . . , n. Using the definition of eLt
from lecture

11, the jth component of the exact solution is given by

uj(t) = elj(t�t0)(u0)j (3)

where (u0)j denotes the jth entry of u0. The real part of lj gives

the growth or decay rate of uj(t) and the imaginary part gives the

frequency of oscillation.

Why do we allow ll (l = 1, . . . , n) to

be complex? Consider the classical IVP

representative of a harmonic oscillator

(such as an undamped spring-mass

system): ..y = �w2y
y(0) = y0.y(0) = v0

(4)

where the constant w2
is used to

emphasize that the constant is positive

(in the mass-spring system, having a

negative constant would correspond to

a negative spring stiffness!)

Note that this IVP can be represented

as a first-order system of IVPs by

defining v =
.y, z = [y, v]T , and

z0 = [y0, v0]T . We can therefore recast

(4) as .z = Az

z(0) = z0

(5)

where

A =


0 1

�w2
0

�
(6)

You may recognize that A has an

eigen-decomposition A = VLV�1

where

V =

"
1

2
i � 1

2
iq

3

4

q
3

4

#

L =


i
p

w 0

0 �i
p

w

� (7)

Premultiplying (5) by V�1
and defining

u = V�1z results in the linear system

.u = Lu

u(0) = u0

(8)

which is identical to (1). Note that,

by virtue of (7), the entries of L are

complex. Thus, even when modeling

real physical systems, the associated

first-order IVP can involve complex

entries.

1 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.

Doing this gives us an expression to solve for uk+1 using known

information at time tk:

uk+1 = uk + DtLuk

= (I + DtL)uk

= (I + DtL)(I + DtL)uk�1

= (I + DtL)k+1u0

(9)

And since L is diagonal, the jth
entry in uk+1 can be expressed sim-

ply as

(uk+1)j = (1 + Dtlj)
k+1(u0)j (10)

e.g., for FE

R(w)

It turns out this is generally true for one-step methods. So to determine absolute
stability:

(A)Establish the relationship between and to determine
(B) Find the values of for which (the typed notes gives some Matlab

code for how to do this)

(uk+1)j (u0)j R(w)
w |R(w) | < 1

Punchline: a one-step method is absolutely stable for the values for which w |R(w) | < 1

Absolute stability for multi-step methods

15

If we apply our general formula for a multi-step method to our model problem:

initial value problems: absolute stability 4

(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as

.u = Lu

u(t0) = u0

where L is the diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775

with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt
k+1

Â
j=k�r+1

b j�(k�r+1)Luj (16)

which can be rearranged as

k+1

Â
j=k�r+1


aj�(k�r+1) I � Dtb j�(k�r+1)L

�
uj = 0 (17)

As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
(uj)l = 0 (18)

How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the

initial value problems: absolute stability 4

(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as

.u = Lu

u(t0) = u0

where L is the diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775

with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt
k+1

Â
j=k�r+1

b j�(k�r+1)Luj (16)

which can be rearranged as

k+1

Â
j=k�r+1


aj�(k�r+1) I � Dtb j�(k�r+1)L

�
uj = 0 (17)

As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
(uj)l = 0 (18)

How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the

⟹

Or for the componentlth

Now here’s the tricky part: we will assume that solutions to (*) can be expressed as
polynomials. That is, we will replace with in (*):(uj)l ζj+r−1

initial value problems: absolute stability 4

(a) (b) Figure 4: Stability region for Heun’s

method a) and the trapezoid method b).

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of Dtll
that yield |R(Dtll)| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

2 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of

our computations involve a finite Dt. In this vein, we characterize the

finite values of Dt that lead to a stable solution with a given method

using the concept of absolute stability. We will again define this

concept with respect to the model problem (1). Remember that this model IVP is

defined as

.u = Lu

u(t0) = u0

where L is the diagonal matrix

L =

2

6666664

l1 0 · · · 0 0

0 l2 · · · 0 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · ln�1 0

0 0 · · · 0 ln

3

7777775

with each ll 2 C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the

expression

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt
k+1

Â
j=k�r+1

b j�(k�r+1)Luj (16)

which can be rearranged as

k+1

Â
j=k�r+1


aj�(k�r+1) I � Dtb j�(k�r+1)L

�
uj = 0 (17)

As occurred for one-step methods, the diagonal form of L enables

us to write out the equation for each component of uj. In particular,

the lth
component of uj, (uj)l , can be solved for via

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
(uj)l = 0 (18)

How can we solve this equation for (uj)l? Notice that if we define

a variable z 2 R and replace (uj)l in (18) with z j+r�1
, we arrive at the

(*)initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

Clean up notation: divide both sides by and rework indexing:ζk

Punchline: solutions to the model problem are given by
the roots of this equation.

·u = Λu

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

(**)

Absolute stability for multi-step methods (cont)

16

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

Punchline: solutions to the model problem are given by
the roots of this equation.

·u = Λu

Call the roots of (**) ζ1, ζ2, …, ζr

(**)

Synthesize. What does this mean? Work backwards:

• If we have that solve (**), then we can write ζ1, ζ2, …, ζr

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

and that will solve (*)(uj)l

• Now let’s say any one of the roots, call it , has an absolute value > 1ζg

• Then advancing in time means that as gets larger, will grow to
infinity as gets larger and larger

(uj)l j ζj
g

j

 will grow to infinity!⟹ (uj)l

• Gives us a criteria for stability of multi-step methods!

For a multi-step method to be stable, each of the must have
absolute value < 1

ζ1, ζ2, …, ζr

Absolute stability for multi-step methods (cont)

17

Let’s make this stability criterion more precise:

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

This is the equation number in the typed notes.
It is equation (**) in our slides

So what’s the recipe for determining the region of absolute stability for multi-step
methods?

(A)Determine the coefficients for the multi-step method of interestα, β
(B) Build the polynomial equation (**) and solve for the roots in terms

of
ζ1, ζ2, …, ζr

Δtλl

(C) Figure out the values of for which all roots are Δtλl < 1

Let’s consider an example to try to make this more tangible

Should be eqn (29) in notes!

An example of absolute stability for multi-step
methods

18

Consider AB2.

• We said last week that the coefficients for this method areα, β

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

• Plugging these into (**) for givesr = 2

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

• Can solve for to getζ

initial value problems: absolute stability 5

expression

k+1

Â
j=k�r+1


aj�(k�r+1) � Dtb j�(k�r+1)ll

�
z j+r�1 = 0 (19)

To make our notation simpler, we can divide by zk
and rework our

indexing to get
r

Â
j=0


aj � Dtb jll

�
z j = 0 (20)

Some extensions must be made in the

derivation allowing for non-distinct

roots, though the conclusions are

unchanged.

This polynomial equation in terms of z has r roots. If these roots

are distinct, we may denote them as z1, . . . , zr. Each of the roots

satisfies (19) and, as a result, (18). Notice that any linear combination

of the roots also satisfies (19). Thus, we can construct a (uj)l that

solves (18) by writing (uj)l as a linear combination of the roots of

(20):

(uj)l =
r

Â
m=1

cmz
j
m (21)

The relation (21) demonstrates that if

any of the roots z1, . . . , zr have modulus

greater than one, (uj)l will grow

without bound as j ! •. Thus, we will

define absolute stability in terms of the

values of Dtll that lead to roots with

modulus less than one.

We have finally arrived at our desired result: we now have a

means to establish a meaningful criterion for whether a multi-step

method will be stable or not.

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of Dtll
that yield solutions z1, . . . , zr to (20) satisfying |z1| < 1,

|z2| < 1, . . . , |zr| < 1. The method is unstable for values of

Dtll that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-

ering an example. Recall that the coefficients for the 2-step Adams-

Bashforth method are

a0 = 0, a1 = �1, a2 = 1

b0 = �1

2
, b1 =

3

2
, b2 = 0

(22)

The polynomial equation (20) therefore becomes


a0 � (Dtll)b0

�
+


a1 � (Dtll)b1

�
z +


a2 � (Dtll)b2

�
z2 = 0

=)

(Dtll)

1

2

�
+


� 1 � (Dtll)

3

2

�
z +


1

�
z2 = 0

(23)

We may solve this quadratic for z in terms of Dtll :

z =

⇥
1 + (Dtll)

3

2

⇤
±

r⇥
1 + (Dtll)

3

2

⇤2 � 4

h
(Dtll)

1

2

i

2

(24)

• Evaluate this for many different values and identify where Δtλl |ζ | < 1

initial value problems: absolute stability 6

We can therefore plot the stability regions for the 2-step Adams-

Bashforth method as follows. First, prescribe a range of values of

Dtll . For each value of Dtll , compute the two roots of (23) using (24).

Next, determine which root has the largest modulus (call it zmax) and

store the modulus, |zmax|, for the given value of Dtll . The following

code uses this procedure to plot the absolute stability region of the

2-step Adams-Bashforth method. The code that implements this

procedure is provided in the snippets below.

Let us make the example more vivid

with a figure:

Figure 5: Absolute stability region for

the 2-step Adams-Bashforth method.

Listing 2: Code snippet for the absolute stability region for AB2
clear all, close all, clc

%Range of values for dt*lambda_l

dtl_r = -1 : 0.0025 : 0;

dtl_i = -0.81 : 0.0025 : 0.81 ;

%make meshgrid of values

[dtlr, dtli] = meshgrid(dtl_r, dtl_i);

%write as complex number

dtl = dtlr + 1i*dtli;

%initialize the root matrix

r = zeros(size(dtl));

%For each value of dt*lambda_l...

for j = 1 : length(dtl(:,1))

for jj = 1 : length(dtl(1,:))

%0^th order coeff

p0 = 1/2*dtl(j,jj);

%1^st order coeff

p1 = -1-3/2*dtl(j,jj);

%2^nd order coeff

p2 = 1;

%Get largest root and store its modulus

r(j,jj) = max(abs(roots([p2, p1, p0])));

end

end

%saturate for easy coloring

r(abs(r) > 1) = 2;

r(abs(r) <= 1) = 1;

%UIUC colormap

cmap = [1 1/2 0; 1 1 1];

