I ILLINOIS

Lecture 12: Error in IVPs

Today:

e Discuss error in finite-difference methods for IVPs
e Characterize truncation error
e Characterize stability

Characterizing the error of one-step
and multi-step methods

We previously derived one-step and multi-step finite-difference methods for solving IVPs.

Let's now transition to an important question: what is the error associated with these
methods?

Global error

The global error of a finite-difference method at some time

instance f; is defined as e; := wu(t;) — u;. Often, this error is
expressed succinctly using an appropriately defined norm || - ||
as ||ex||-

There are two contributions to the global error: the truncation error advancing from one time
step to the next, and the accumulated error over all past time steps.

The truncation error associated with advancing from one time step to the next

The accumulated error over all past time steps.

We will build intuition for these, and then consider the truncation error in more detail.

I ILLINOIS

Truncation Error

Building intuition for the sources of error
with the Forward Euler method

To see what the two sources of error are, consider the FE method.

The truncation error is the error associated with applying the numerical method to the
true solution
() —u(te)

T — AL — f(u(tk), tk) uk+1 — U, = Atf(llk, tk)

This error comes from the fact that even if we started with the perfect solution at
u(t,), we would incur some error in getting our approximation atf = 7,

The accumulation error is the collection of the truncation errors over all previous time
steps, not just in going from 7, to .,

Let's now consider how to quantity the truncation error for one-step and multi-step methods

Quantitying the truncation error (TE) for one-step
methods

Let's quantify the TE for the FE method first

_u(teg) —u(ty)

T = Y — fu(te), t)
t —u(t . : s
_u kH)At ulte) _ 1(t;) |using the definition of an IVP]
u(t — u(t u(t — u(t
_ u(bepr) —u(te) u(teyr) —u(ty) oA
At At
lusing a Taylor series expansion of u(t;) about ¢ 1]
tol — b fy — 1)
— 1, = O(At) u(t) = u() + () - A
. (A
= u(f) + u(f)Ar + u(s) + ...
— ugy = L) T8 AL
Big O notation Al ’
. At
u(tk)7 +...<MAt as At—0 _ U(ZkH)A; u(z,) + O(AD

where M is some constant

\/

An exercise with truncation error ot one-step methods

Exercise. \Write out the TE for the Backward Euler method and Heun’s method

_utyy) —u@)

T = A — (1), 640 BE
7, = e "“)A; ut) % [f(u(tk), t) + f(u() + Arf(u(z), 1), tk)] Heun’s

Exercise. Quantify the TE for the Backward Euler method

(%) —us)
Tk =

— f(a(ty 1), fry1)

At
u(t,) —u(®)
Tk = . At — u(fy)
k At At k+1 9 e

= 7, = O(A?)

Constructing and quantifying TE for multi-step
methods

Whereas for one-step methods the TE has to be constructed on a case by case basis, the
procedure is more generic for multi-step methods...

Truncation error: multi-step methods

An r-step method defined using (9) has a truncation error
given by

k41

Y. &g nu(t) -

j=k—r+1
k+1

At Y ﬁj(kr+1)f(u<tj)rtj)]

j=k—r+1

1

Tk:E

(12)

The truncation error can be quantified through different Taylor series (see the typed notes):

If this = 0... his=0
this =0 and this — 7, = 0(AD

1 k+1 . .
T = 1 | u(ty) + (kz (J=F)ai_(k—r1) = Bj—(k—r+1)) i (ty)+
j=k—r+1

[E(] - k)zij—(k—rﬂ) —(j — k)@ i(ty) + -+ (*)
and this =0 = 7, = O(AF?)

k+1 1 1 dTu
_1 . : ~1
AH < E [(j — k)qzx]-_(k_wrl) — (G- 1)! (j — k)1 ,Bj—(k—r+1)]) FTY

tr

Summary: truncation error for multi-step methods

Steps for establishing the truncation error of a multi-step method:

(A) The multi-step method will be given to you. From that, figure out the a and 8
coefficients.

(B) Check to see what conditions these coefficients satisfy, and use equation (*) to see if
the method has a truncation error that is O(At), O(At?), etc.

I ILLINOIS

Accumulated Error

But what about global error?

How do we relate the truncation error to the global error that we actually care about?

We introduce the concept of stability...

Remember that the second contribution to the global error was the accumulated error
that accrues over the past k time steps.

We will define a notion of stability that ensures that this error doesn’t grow out of
hand.

Once we have that, we will be able to say that:

A finite difference method for an IVP will converge to the true solution (i.e., the
FD solution will get infinitesimally close to the true solution as At — 0) if

(A) The truncation error satisfies 7, = O(A#’) for (an integer) p > 1
(B) The method is stable (we will define this concept later) at At = 0.

10

Building intuition for absolute stability through a
model IVP

Let’s start to build intuition for our notion of stability by considering the model problem for
stability

u=Au
u(to) = uo
where A is a diagonal matrix

A1 0 - 0 0 |

0 Ay --- 0 0

Ao | f

O 0 --- Ayq1 O

0o 0 --- 0 An

witheach A; € C, [=1,...,n

[t turns out that the exact solution to this problem is

uj(t) = MU0 (),

How will we use this model problem to understand stability?? We will first define stability
for one-step methods, then look at multi-step methods. Let’s consider applying FE to the
problem first.

Building intuition for absolute stability: applying

FE to the model IVP
U1 = U + AtAuy
= (I + AtA)uy
= (I 4+ AtA) (I + AtA)uy_q Or, looking at the j™ entry specifically:
= (I+ AtA)*ug (t1)j = (1+ DA (ug);

What does this mean?

If |1+ Az4;| <1, then (4,); will eventually — 0 when k becomes large enough

If |1+ Azd;| > 1, then (4,); will eventually — oo when k becomes large enough

Gives a criteria for identifying stability! Our method is absolutely stable if |1 + At4;| <1

3 &
-
S w

6 -4 -2 0 2
R(AtA;)

12

Your turn: determine the absolute stability criteria
for the Backward Euler method

U1 = Ug + AtAuy

= (I — AtA)_luk
= [(I — AtA) 1) g
1

(uk+1)]‘ — (1 — At/\]-)k+1 (uo)]‘

If 17|11 = Atd;| < 1, then (i,); will eventually — O when k becomes large enough

If 17|11 = Atd;| > 1, then (i,); will eventually — oo when k becomes large enough

Our method is absolutely stable if 1/|1 — At4;| < 1

The solutions won’t blow up to infinity for a
much wider range of At/lj

K/

Doesn’t ensure accuracy! Just means the
solutions won’t grow infinitely large

See the typed notes for yet another example
involving RK4

13

General approach to absolute stability
for one-step methods

Notice that both FE and BE led to a relationship between (i); and (4); of the form

(Uk11)j = Rk+1(w)(”0)]’ e.g., for FE
(1) =1+ DA (o),

[t turns out this is generally true for one-step methods. So to determine absolute
stability:
(A)Establish the relationship between (i, +1); and (), to determine R(w)

(B) Find the values of w for which | R(w)| < 1 (the typed notes gives some Matlab
code for how to do this)

Punchline: a one-step method is absolutely stable for the w values for which |R(w)| < 1

14

Absolute stability for multi-step methods

If we apply our general formula for a multi-step method to our model problem:

k+1 k+1
Z Ki_(k—r+1)Uj = At Z :B] (k—r+1 Au]
j=k—r+1 j=k—r+1
k—+1
= I TR Atﬁj(krﬂ)f\} uj =0
j=k—r+1

Or for the ["* component
k+1

)

j=k—r+1

ch—(k—i’—i—l At,B] (k— 1’—0—1))”] ()l =0 (*)

Now here’s the tricky part: we will assume that solutions to (*) can be expressed as
polynomials. That is, we will replace (1;); with {/*" ~Lin (%)

k41

) ["‘]’—(k—rH) - Atﬁj—(k—r+l)/\l] gl =0
j=k—r+1

Clean up notation: divide both sides by ¢* and rework indexing;

r

(%) Y [a]. - AtﬁjAl] g =0

j=0

15

Absolute stability for multi-step methods (cont)

(%)]é) [(x]. - Atﬁj)\l] =0

Call the roots of (**) {, &, ..., ¢,

Synthesize. What does this mean? Work backwards:

e If wehave(,,{,, ..., , that solve (**), then we can write

r .
(uj)l = Z CmC{n
m=1
and that (u;); will solve (%)

e Now let’s say any one of the roots, call it {,, has an absolute value > 1

e Then advancing (&), in time means that as j gets larger, é’é will grow to

infinity as j gets larger and larger
= (u;), will grow to infinity!
e Gives us a criteria for stability of multi-step methods!

For a multi-step method to be stable, each of the {;, {,, ..., {. must have

absolute value < 1
16

Absolute stability for multi-step methods (cont)

Let’s make this stability criterion more precise:

Absolute stability criterion: multi-step methods
An r-step method is called absolutely stable for values of AtA,
that yield solutions (3, ..., {, to (20) satisfying |{1] < 1,

0] < 1,...,|¢;] < 1. The method is unstable for values of
AtA; that do not satisty that criteria.

This is the equation number in the typed notes.
[t is equation (**) in our slides

So what's the recipe for determining the region of absolute stability for multi-step
methods?

(A)Determine the a, f# coefficients for the multi-step method of interest

(B) Build the polynomial equation (**) and solve for the roots {;, {5, ..., {, in terms
of At/Il

(C) Figure out the values of A4, for which all roots are < 1

Let’s consider an example to try to make this more tangible

17

An example of absolute stability for multi-step

methods

Consider AB2.

We said last week that the a, f coefficients for this method are

Xo = 0, X1 = —1,062 =1
Bo=—5.B1=5.B2 =0
Plugging these into (**) for r = 2 gives 4l
[0(0 — (At)\l)ﬁo + [0&1 — (At)\l)ﬁll C + [(Xz — (At/\l)ﬁzl Cz =0 —~ 2]
S o -
1 3 = b
— [(At/\l)—] + [— 1— (At/\l)—]§+ H >=0 i
2 2 21
Can solve for ¢ to get 4
1+ (AtA)3] + \/[1 + (8tA)3]7 — 4| (At] o 2

6 = 2

Evaluate this for many different Az4, values and identify where || < 1

18

