Lecture 12: Error in IVPs

Today:

- Discuss **error** in finite-difference methods for IVPs
 - Characterize truncation error
 - Characterize **stability**

Characterizing the error of one-step and multi-step methods

We previously derived one-step and multi-step finite-difference methods for solving IVPs.

Let's now transition to an important question: what is the error associated with these methods?

Global error

The *global error* of a finite-difference method at some time instance t_k is defined as $e_k := u(t_k) - u_k$. Often, this error is expressed succinctly using an appropriately defined norm $|| \cdot ||$ as $||e_k||$.

There are two contributions to the global error: the truncation error advancing from one time step to the next, and the accumulated error over all past time steps.

The **truncation error** associated with advancing from one time step to the next

The *accumulated error* over all past time steps.

We will build intuition for these, and then consider the *truncation error* in more detail.

Truncation Error

Building intuition for the sources of error with the Forward Euler method

To see what the two sources of error are, consider the FE method.

The **truncation error** is the error associated with applying the numerical method to the **true solution** $\tau_{k} = \frac{u(t_{k+1}) - u(t_{k})}{\Delta t} - f(u(t_{k}), t_{k})$ $\mathbf{u}_{k+1} - \mathbf{u}_{k} = \Delta t \mathbf{f}(\mathbf{u}_{k}, t_{k})$ FE method

This error comes from the fact that even if we started with the perfect solution at $u(t_k)$, we would incur some error in getting our approximation at $t = t_{k+1}$

The *accumulation error* is the collection of the truncation errors over all previous time steps, not just in going from t_k to t_{k+1}

Let's now consider how to quantify the truncation error for **one-step** and **multi-step** methods

Quantifying the truncation error (TE) for one-step methods

Let's quantify the TE for the FE method first

$$\tau_{k} = \frac{u(t_{k+1}) - u(t_{k})}{\Delta t} - f(u(t_{k}), t_{k})$$

$$= \frac{u(t_{k+1}) - u(t_{k})}{\Delta t} - \dot{u}(t_{k}) \quad \text{[using the definition of an IVP]}$$

$$= \frac{u(t_{k+1}) - u(t_{k})}{\Delta t} - \frac{u(t_{k+1}) - u(t_{k})}{\Delta t} + O(\Delta t)$$

$$\text{[using a Taylor series expansion of } u(t_{k}) \text{ about } t_{k+1}\text{]}$$

$$\boldsymbol{\tau}_{k} = O(\Delta t)$$

$$\mathbf{u}(t_{k+1}) = \mathbf{u}(t_{k}) + \dot{\mathbf{u}}(t_{k}) \frac{(t_{k+1} - t_{k})}{1!} + \ddot{\mathbf{u}}(t_{k}) \frac{(t_{k+1} - t_{k})}{2!} + \dots$$

$$= \mathbf{u}(t_{k}) + \dot{\mathbf{u}}(t_{k}) \Delta t + \ddot{\mathbf{u}}(t_{k}) \frac{(\Delta t)^{2}}{2} + \dots$$

$$\frac{\text{Big O notation}}{\ddot{\mathbf{u}}(t_k)\frac{\Delta t}{2} + \dots \leq M\Delta t \text{ as } \Delta t \to 0} = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_k)}{\Delta t} + O(\Delta t)$$
where *M* is some constant

An exercise with truncation error of one-step methods

Exercise. Write out the TE for the Backward Euler method and Heun's method

$$\tau_{k} = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} - \mathbf{f}(\mathbf{u}(t_{k+1}), t_{k+1})$$

$$\mathbf{BE}$$

$$\tau_{k} = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} - \frac{1}{2} \Big[\mathbf{f}(\mathbf{u}(t_{k}), t_{k}) + \mathbf{f} \Big(\mathbf{u}(t_{k}) + \Delta t \mathbf{f}(\mathbf{u}(t_{k}), t_{k}), t_{k} \Big) \Big]$$
Heun's

Exercise. Quantify the TE for the Backward Euler method

$$\tau_{k} = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} - \mathbf{f}(\mathbf{u}(t_{k+1}), t_{k+1}) \qquad \text{Notice that } \mathbf{u}(t_{k}) = \mathbf{u}(t_{k+1}) - \dot{\mathbf{u}}(t_{k+1})\Delta t + \ddot{\mathbf{u}}(t_{k+1}) \frac{\Delta t^{2}}{2} + \dots \\ \Rightarrow \dot{\mathbf{u}}(t_{k+1}) = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} + \ddot{\mathbf{u}}(t_{k+1}) \frac{\Delta t}{2} + \dots \\ \Rightarrow \dot{\mathbf{u}}(t_{k+1}) = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} + \ddot{\mathbf{u}}(t_{k+1}) \frac{\Delta t}{2} + \dots \\ \tau_{k} = \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} - \frac{\mathbf{u}(t_{k+1}) - \mathbf{u}(t_{k})}{\Delta t} - \ddot{\mathbf{u}}(t_{k+1}) - \mathbf{u}(t_{k})} - \ddot{\mathbf{u}}(t_{k+1}) \frac{\Delta t}{2} + \dots \\ \end{cases}$$

 $\implies \tau_k = O(\Delta t)$

Constructing and quantifying TE for multi-step methods

Whereas for one-step methods the TE has to be constructed on a case by case basis, the procedure is more generic for multi-step methods...

Truncation error: multi-step methods An *r*-step method defined using (9) has a truncation error given by $\tau_{k} = \frac{1}{\Delta t} \left[\sum_{j=k-r+1}^{k+1} \alpha_{j-(k-r+1)} \boldsymbol{u}(t_{j}) - \Delta t \sum_{j=k-r+1}^{k+1} \beta_{j-(k-r+1)} f\left(\boldsymbol{u}(t_{j}), t_{j}\right) \right]$ (12)

The truncation error can be quantified through different Taylor series (see the typed notes):

$$\tau_{k} = \frac{1}{\Delta t} \left(\sum_{\substack{k+1 \ j=k-r+1}}^{k+1} \alpha_{j-(k-r+1)} \right) u(t_{k}) + \left(\sum_{\substack{j=k-r+1 \ j=k-r+1}}^{k+1} (j-k)\alpha_{j-(k-r+1)} - \beta_{j-(k-r+1)} \right) \dot{u}(t_{k}) + \Delta t \left(\sum_{\substack{j=k-r+1 \ and this = 0}}^{k+1} \left[\frac{1}{2} (j-k)^{2} \alpha_{j-(k-r+1)} - (j-k)\beta_{j-(k-r+1)} \right] \right) \ddot{u}(t_{k}) + \dots + \Delta t^{q-1} \left(\sum_{\substack{j=k-r+1 \ j=k-r+1}}^{k+1} \left[\frac{1}{q!} (j-k)^{q} \alpha_{j-(k-r+1)} - \frac{1}{(q-1)!} (j-k)^{q-1} \beta_{j-(k-r+1)} \right] \right) \frac{d^{q} u}{dt^{q}} \Big|_{t_{k}}$$
(*)

Summary: truncation error for multi-step methods

Steps for establishing the truncation error of a multi-step method:

- (A) The multi-step method will be given to you. From that, figure out the α and β coefficients.
- (B) Check to see what conditions these coefficients satisfy, and use equation (*) to see if the method has a truncation error that is $O(\Delta t)$, $O(\Delta t^2)$, etc.

Accumulated Error

But what about global error?

How do we relate the *truncation error* to the *global error* that we actually care about?

We introduce the concept of *stability*...

Remember that the second contribution to the *global error* was the *accumulated error* that accrues over the past *k* time steps.

We will define a notion of stability that ensures that this error doesn't grow out of hand.

Once we have that, we will be able to say that:

A finite difference method for an IVP will *converge* to the true solution (i.e., the FD solution will get infinitesimally close to the true solution as $\Delta t \rightarrow 0$) if

(A) The truncation error satisfies $\tau_k = O(\Delta t^p)$ for (an integer) $p \ge 1$ (B) The method is stable (we will define this concept later) at $\Delta t = 0$.

We call a FD method satisfying these properties "order *p* accurate"

Building intuition for *absolute stability* through a model IVP

Let's start to build intuition for our notion of stability by considering the model problem for stability

 $\dot{\boldsymbol{u}} = \boldsymbol{\Lambda} \boldsymbol{u}$ $\boldsymbol{u}(t_0) = \boldsymbol{u}_0$

where Λ is a diagonal matrix

How will we use this model problem to understand stability?? We will first define stability for one-step methods, then look at multi-step methods. Let's consider applying FE to the problem first.

Building intuition for *absolute stability:* applying FE to the model IVP

$$u_{k+1} = u_k + \Delta t \Lambda u_k$$

= $(I + \Delta t \Lambda) u_k$
= $(I + \Delta t \Lambda) (I + \Delta t \Lambda) u_{k-1}$ Or, looking at the j^{th} entry specifically:
= $(I + \Delta t \Lambda)^{k+1} u_0$ $(u_{k+1})_j = (1 + \Delta t \lambda_j)^{k+1} (u_0)_j$

What does this mean?

If $|1 + \Delta t \lambda_j| < 1$, then $(u_{k+1})_j$ will eventually $\rightarrow 0$ when *k* becomes large enough If $|1 + \Delta t \lambda_j| > 1$, then $(u_{k+1})_j$ will eventually $\rightarrow \infty$ when *k* becomes large enough

Gives a criteria for identifying stability! Our method is *absolutely stable* if $|1 + \Delta t \lambda_i| < 1$

If $1/|1 - \Delta t \lambda_j| < 1$, then $(u_{k+1})_j$ will eventually $\rightarrow 0$ when *k* becomes large enough If $1/|1 - \Delta t \lambda_j| > 1$, then $(u_{k+1})_j$ will eventually $\rightarrow \infty$ when *k* becomes large enough

Our method is *absolutely stable* if $1/|1 - \Delta t \lambda_j| < 1$

General approach to absolute stability for one-step methods

Notice that *both* FE and BE led to a relationship between $(u_{k+1})_j$ and $(u_0)_j$ of the form

It turns out this is generally true for one-step methods. So to determine absolute stability:

- (A) Establish the relationship between $(u_{k+1})_i$ and $(u_0)_i$ to determine R(w)
- (B) Find the values of *w* for which |R(w)| < 1 (the typed notes gives some Matlab code for how to do this)

Punchline: a one-step method is absolutely stable for the *w* values for which |R(w)| < 1

Absolute stability for multi-step methods

If we apply our general formula for a multi-step method to our model problem:

$$\sum_{j=k-r+1}^{k+1} \alpha_{j-(k-r+1)} u_j = \Delta t \sum_{j=k-r+1}^{k+1} \beta_{j-(k-r+1)} \Lambda u_j$$
$$\implies \sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} I - \Delta t \beta_{j-(k-r+1)} \Lambda \right] u_j = 0$$

Or for the l^{th} component

$$\sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} - \Delta t \beta_{j-(k-r+1)} \lambda_l \right] (u_j)_l = 0 \qquad (*)$$

Now here's the tricky part: we will *assume* that solutions to (*) can be expressed as polynomials. That is, we will replace $(u_j)_l$ with ζ^{j+r-1} in (*):

$$\sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} - \Delta t \beta_{j-(k-r+1)} \lambda_l \right] \zeta^{j+r-1} = 0$$

Clean up notation: divide both sides by ζ^k and rework indexing:

(**)
$$\sum_{j=0}^{r} \left[\alpha_{j} - \Delta t \beta_{j} \lambda_{l} \right] \zeta^{j} = 0$$
Punchline: solutions to the model problem $\dot{\mathbf{u}} = \Lambda \mathbf{u}$ are given by the roots of this equation.

Absolute stability for multi-step methods (cont)

Punchline: solutions to the model problem $\dot{\mathbf{u}} = \mathbf{\Lambda} \mathbf{u}$ are given by the roots of this equation.

Call the roots of (**) $\zeta_1, \zeta_2, ..., \zeta_r$

Synthesize. What does this mean? Work backwards:

• If we have $\zeta_1, \zeta_2, ..., \zeta_r$ that solve (**), then we can write

$$(u_j)_l = \sum_{m=1}^r c_m \zeta_m^j$$

and that $(u_j)_l$ *will* solve (*)

- Now let's say any one of the roots, call it $\zeta_{g'}$ has an absolute value > 1
- Then advancing $(u_j)_l$ in time means that as j gets larger, ζ_g^j will grow to infinity as j gets larger and larger

 \implies $(u_i)_l$ will grow to infinity!

• Gives us a criteria for stability of multi-step methods!

For a multi-step method to be stable, each of the $\zeta_1, \zeta_2, ..., \zeta_r$ must have absolute value < 1

Absolute stability for multi-step methods (cont)

So what's the recipe for determining the region of absolute stability for multi-step methods?

(A)Determine the α , β coefficients for the multi-step method of interest

(B) Build the polynomial equation (**) and solve for the roots $\zeta_1, \zeta_2, ..., \zeta_r$ in terms of $\Delta t \lambda_l$

(C) Figure out the values of $\Delta t \lambda_l$ for which *all* roots are < 1

Let's consider an example to try to make this more tangible

An example of absolute stability for multi-step methods

Consider AB2.

• We said last week that the α , β coefficients for this method are

$$\alpha_0 = 0, \ \alpha_1 = -1, \alpha_2 = 1$$

 $\beta_0 = -\frac{1}{2}, \beta_1 = \frac{3}{2}, \beta_2 = 0$

• Plugging these into (**) for r = 2 gives

$$\begin{bmatrix} \alpha_0 - (\Delta t \lambda_l) \beta_0 \end{bmatrix} + \begin{bmatrix} \alpha_1 - (\Delta t \lambda_l) \beta_1 \end{bmatrix} \zeta + \begin{bmatrix} \alpha_2 - (\Delta t \lambda_l) \beta_2 \end{bmatrix} \zeta^2 = 0$$
$$\implies \begin{bmatrix} (\Delta t \lambda_l) \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -1 - (\Delta t \lambda_l) \frac{3}{2} \end{bmatrix} \zeta + \begin{bmatrix} 1 \end{bmatrix} \zeta^2 = 0$$

• Can solve for ζ to get

$$\zeta = \frac{\left[1 + (\Delta t \lambda_l)\frac{3}{2}\right] \pm \sqrt{\left[1 + (\Delta t \lambda_l)\frac{3}{2}\right]^2 - 4\left[(\Delta t \lambda_l)\frac{1}{2}\right]}}{2}$$

• Evaluate this for many different $\Delta t \lambda_l$ values and identify where $|\zeta| < 1$ •