Lecture 12: Error in IVPs

Today:

• Discuss error in finite-difference methods for IVPs
 • Characterize truncation error
 • Characterize stability
Characterizing the error of one-step and multi-step methods

We previously derived one-step and multi-step finite-difference methods for solving IVPs. Let’s now transition to an important question: what is the error associated with these methods?

Global error

The global error of a finite-difference method at some time instance \(t_k \) is defined as \(e_k := u(t_k) - u_k \). Often, this error is expressed succinctly using an appropriately defined norm \(\| \cdot \| \) as \(\| e_k \| \).

There are two contributions to the global error: the truncation error advancing from one time step to the next, and the accumulated error over all past time steps.

The truncation error associated with advancing from one time step to the next.

The accumulated error over all past time steps.

We will build intuition for these, and then consider the truncation error in more detail.
Truncation Error
To see what the two sources of error are, consider the FE method.

The **truncation error** is the error associated with applying the numerical method to the true solution

\[
\tau_k = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - f(u(t_k), t_k)
\]

This error comes from the fact that even if we started with the perfect solution at \(u(t_k)\), we would incur some error in getting our approximation at \(t = t_{k+1}\)

The **accumulation error** is the collection of the truncation errors over all previous time steps, not just in going from \(t_k\) to \(t_{k+1}\)

Let’s now consider how to quantify the truncation error for one-step and multi-step methods.
Quantifying the truncation error (TE) for one-step methods

Let’s quantify the TE for the FE method first

\[\tau_k = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - f(u(t_k), t_k) \]

\[= \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - \dot{u}(t_k) \quad [\text{using the definition of an IVP}] \]

\[= \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - \frac{u(t_{k+1}) - u(t_k)}{\Delta t} + O(\Delta t) \]

\[[\text{using a Taylor series expansion of } u(t_k) \text{ about } t_{k+1}] \]

\[\implies \tau_k = O(\Delta t) \]

\[u(t_{k+1}) = u(t_k) + \dot{u}(t_k)\frac{(t_{k+1} - t_k)}{1!} + \ddot{u}(t_k)\frac{(t_{k+1} - t_k)^2}{2!} + \ldots \]

\[= u(t_k) + \dot{u}(t_k)\Delta t + \ddot{u}(t_k)\frac{(\Delta t)^2}{2} + \ldots \]

\[\implies \dot{u}(t_k) = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} + \ddot{u}(t_k)\frac{\Delta t}{2} + \ldots \]

\[= \frac{u(t_{k+1}) - u(t_k)}{\Delta t} + O(\Delta t) \]

Big O notation

\[\ddot{u}(t_k)\frac{\Delta t}{2} + \ldots \leq M\Delta t \quad \text{as} \quad \Delta t \to 0 \]

where \(M \) is some constant
An exercise with truncation error of one-step methods

Exercise. Write out the TE for the Backward Euler method and Heun’s method

\[
\tau_k = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - f(u(t_{k+1}), t_{k+1}) \quad \text{BE}
\]

\[
\tau_k = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - \frac{1}{2} \left[f(u(t_k), t_k) + f(u(t) + \Delta t \cdot f(u(t), t), t) \right] \quad \text{Heun’s}
\]

Exercise. Quantify the TE for the Backward Euler method

\[
\tau_k = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} - f(u(t_{k+1}), t_{k+1})
\]

Notice that \(u(t_k) = u(t_{k+1}) - \dot{u}(t_{k+1}) \Delta t + \ddot{u}(t_{k+1}) \Delta t^2 + \ldots\)

\[
\Rightarrow \dot{u}(t_{k+1}) = \frac{u(t_{k+1}) - u(t_k)}{\Delta t} + \ddot{u}(t_{k+1}) \frac{\Delta t}{2} + \ldots
\]

\[
\Rightarrow u(t_{k+1}) = u(t_{k+1}) - \dot{u}(t_{k+1}) \Delta t + \ddot{u}(t_{k+1}) \frac{\Delta t^2}{2} + \ldots
\]

\[
\Rightarrow \tau_k = O(\Delta t)
\]
Constructing and quantifying TE for multi-step methods

Whereas for one-step methods the TE has to be constructed on a case by case basis, the procedure is more generic for multi-step methods...

Truncation error: multi-step methods

An \(r \)-step method defined using (9) has a truncation error given by

\[
\tau_k = \frac{1}{\Delta t} \left[\sum_{j=k-r+1}^{k+1} \alpha_{j-(k-r+1)} u(t_j) - \Delta t \sum_{j=k-r+1}^{k+1} \beta_{j-(k-r+1)} f(u(t_j), t_j) \right]
\]

The truncation error can be quantified through different Taylor series (see the typed notes):

\[
\tau_k = \frac{1}{\Delta t} \left(\sum_{j=k-r+1}^{k+1} \alpha_{j-(k-r+1)} \right) u(t_k) + \left(\sum_{j=k-r+1}^{k+1} \left[\frac{(j-k)^2 \alpha_{j-(k-r+1)} - (j-k) \beta_{j-(k-r+1)}}{2} \right] \right) \dot{u}(t_k) + \cdots +
\]

\[
\Delta t \left(\sum_{j=k-r+1}^{k+1} \left[\frac{1}{2} (j-k)^2 \alpha_{j-(k-r+1)} - (j-k) \beta_{j-(k-r+1)} \right] \right) \ddot{u}(t_k) + \cdots +
\]

\[
\Delta t^{q-1} \left(\sum_{j=k-r+1}^{k+1} \left[\frac{1}{q!} (j-k)^q \alpha_{j-(k-r+1)} - \frac{1}{(q-1)!} (j-k)^{q-1} \beta_{j-(k-r+1)} \right] \right) \frac{d^q u}{dt^q} \bigg|_{t_k}
\]

\[\Rightarrow \tau_k = O(\Delta t)\]

\[\Rightarrow \tau_k = O(\Delta t^2)\]
Summary: truncation error for multi-step methods

Steps for establishing the truncation error of a multi-step method:

(A) The multi-step method will be given to you. From that, figure out the α and β coefficients.

(B) Check to see what conditions these coefficients satisfy, and use equation (*) to see if the method has a truncation error that is $O(\Delta t)$, $O(\Delta t^2)$, etc.
Accumulated Error
But what about global error?

How do we relate the truncation error to the global error that we actually care about?

We introduce the concept of stability...

Remember that the second contribution to the global error was the accumulated error that accrues over the past k time steps.

We will define a notion of stability that ensures that this error doesn’t grow out of hand.

Once we have that, we will be able to say that:

A finite difference method for an IVP will converge to the true solution (i.e., the FD solution will get infinitesimally close to the true solution as $\Delta t \to 0$) if

(A) The truncation error satisfies $\tau_k = O(\Delta t^p)$ for (an integer) $p \geq 1$
(B) The method is stable (we will define this concept later) at $\Delta t = 0$.

We call a FD method satisfying these properties “order p accurate”
Building intuition for *absolute stability* through a model IVP

Let’s start to build intuition for our notion of stability by considering the model problem for stability

\[\dot{u} = \Lambda u \]
\[u(t_0) = u_0 \]

where \(\Lambda\) is a diagonal matrix

\[
\Lambda = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 & 0 \\
0 & \lambda_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & 0 \\
0 & 0 & \cdots & 0 & \lambda_n
\end{bmatrix}
\]

with each \(\lambda_l \in \mathbb{C}, l = 1, \ldots, n\)

It turns out that the exact solution to this problem is

\[u_j(t) = e^{\lambda_j(t-t_0)}(u_0)_j \]

How will we use this model problem to understand stability?? We will first define stability for one-step methods, then look at multi-step methods. Let’s consider applying FE to the problem first.
Building intuition for absolute stability: applying FE to the model IVP

\[u_{k+1} = u_k + \Delta t \Lambda u_k \]

\[= (I + \Delta t \Lambda)u_k \]

\[= (I + \Delta t \Lambda)(I + \Delta t \Lambda)u_{k-1} \]

\[= (I + \Delta t \Lambda)^{k+1}u_0 \]

Or, looking at the \(j^{th} \) entry specifically:

\[(u_{k+1})_j = (1 + \Delta t \lambda_j)^{k+1}(u_0)_j \]

What does this mean?

If \(|1 + \Delta t \lambda_j| < 1 \), then \((u_{k+1})_j \) will eventually \(\rightarrow 0 \) when \(k \) becomes large enough.

If \(|1 + \Delta t \lambda_j| > 1 \), then \((u_{k+1})_j \) will eventually \(\rightarrow \infty \) when \(k \) becomes large enough.

Gives a criteria for identifying stability! Our method is absolutely stable if \(|1 + \Delta t \lambda_j| < 1 \)

\[\text{Stable if } \Delta t \lambda \text{ is in the orange circle} \]

\[|z| = |x + yi| = \sqrt{x^2 + y^2} \]

Verify this for yourselves… Recall that
Your turn: determine the absolute stability criteria for the Backward Euler method

\[u_{k+1} = u_k + \Delta t \Lambda u_{k+1} \]
\[= (I - \Delta t \Lambda)^{-1} u_k \]
\[= [(I - \Delta t \Lambda)^{-1}]^{k+1} u_0 \]
\[(u_{k+1})_j = \frac{1}{(1 - \Delta t \lambda_j)^{k+1}} (u_0)_j \]

If \(1/|1 - \Delta t \lambda_j| < 1 \), then \((u_{k+1})_j \) will eventually \(\to 0 \) when \(k \) becomes large enough.

If \(1/|1 - \Delta t \lambda_j| > 1 \), then \((u_{k+1})_j \) will eventually \(\to \infty \) when \(k \) becomes large enough.

Our method is **absolutely stable** if \(1/|1 - \Delta t \lambda_j| < 1 \)
General approach to absolute stability for one-step methods

Notice that both FE and BE led to a relationship between \((u_{k+1})_j\) and \((u_0)_j\) of the form

\[
(u_{k+1})_j = R^{k+1}(w)(u_0)_j
\]

\(w = \lambda_j \Delta t\)

e.g., for FE

\[
(u_{k+1})_j = (1 + \Delta t \lambda_j)^{k+1}(u_0)_j
\]

It turns out this is generally true for one-step methods. So to determine absolute stability:

(A) Establish the relationship between \((u_{k+1})_j\) and \((u_0)_j\) to determine \(R(w)\)

(B) Find the values of \(w\) for which \(|R(w)| < 1\) (the typed notes gives some Matlab code for how to do this)

Punchline: a one-step method is absolutely stable for the \(w\) values for which \(|R(w)| < 1\)
Absolute stability for multi-step methods

If we apply our general formula for a multi-step method to our model problem:

\[
\sum_{j=k-r+1}^{k+1} \alpha_{j-(k-r+1)} u_j = \Delta t \sum_{j=k-r+1}^{k+1} \beta_{j-(k-r+1)} \Lambda u_j
\]

\[
\Rightarrow \quad \sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} \mathbf{I} - \Delta t \beta_{j-(k-r+1)} \Lambda \right] u_j = 0
\]

Or for the \(l^{th}\) component

\[
\sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} - \Delta t \beta_{j-(k-r+1)} \lambda_l \right] (u_j)_l = 0 \quad (*)
\]

Now here’s the tricky part: we will assume that solutions to (*) can be expressed as polynomials. That is, we will replace \((u_j)_l\) with \(\zeta^{j+r-1}\) in (*):

\[
\sum_{j=k-r+1}^{k+1} \left[\alpha_{j-(k-r+1)} - \Delta t \beta_{j-(k-r+1)} \lambda_l \right] \zeta^{j+r-1} = 0
\]

Clean up notation: divide both sides by \(\zeta^k\) and rework indexing:

\[
(*) \quad \sum_{j=0}^{r} \left[\alpha_j - \Delta t \beta_j \lambda_l \right] \zeta^j = 0
\]

\textbf{Punchline:} solutions to the model problem \(\ddot{\mathbf{u}} = \Lambda \mathbf{u}\) are given by the roots of this equation.
Absolute stability for multi-step methods (cont)

\[\sum_{j=0}^{r} \left[\alpha_j - \Delta t \beta_j \lambda_l \right] \zeta^j = 0 \]

(Punchline: solutions to the model problem \(\dot{u} = \Lambda u \) are given by the roots of this equation.

Call the roots of (**) \(\zeta_1, \zeta_2, \ldots, \zeta_r \)

Synthesize. What does this mean? Work backwards:

- If we have \(\zeta_1, \zeta_2, \ldots, \zeta_r \) that solve (**) then we can write
 \[(u_j)_l = \sum_{m=1}^{r} c_m \zeta_m^j \]
 and that \((u_j)_l \) will solve (*)

- Now let’s say any one of the roots, call it \(\zeta_g \) has an absolute value > 1

- Then advancing \((u_j)_l \) in time means that as \(j \) gets larger, \(\zeta_g^j \) will grow to infinity as \(j \) gets larger and larger
 \[\implies (u_j)_l \text{ will grow to infinity!} \]

- Gives us a criteria for stability of multi-step methods!

For a multi-step method to be stable, each of the \(\zeta_1, \zeta_2, \ldots, \zeta_r \) must have absolute value < 1
Absolute stability for multi-step methods (cont)

Let’s make this stability criterion more precise:

An r-step method is called absolutely stable for values of $\Delta t \lambda_l$ that yield solutions ζ_1, \ldots, ζ_r to (20) satisfying $|\zeta_1| < 1$, $|\zeta_2| < 1$, ..., $|\zeta_r| < 1$. The method is unstable for values of $\Delta t \lambda_l$ that do not satisfy that criteria.

So what’s the recipe for determining the region of absolute stability for multi-step methods?

(A) Determine the α, β coefficients for the multi-step method of interest

(B) Build the polynomial equation (***) and solve for the roots $\zeta_1, \zeta_2, \ldots, \zeta_r$ in terms of $\Delta t \lambda_l$

(C) Figure out the values of $\Delta t \lambda_l$ for which **all** roots are < 1

Let’s consider an example to try to make this more tangible
An example of absolute stability for multi-step methods

Consider AB2.

- We said last week that the \(\alpha, \beta \) coefficients for this method are
 \[
 \alpha_0 = 0, \ \alpha_1 = -1, \alpha_2 = 1
 \]
 \[
 \beta_0 = -\frac{1}{2}, \ \beta_1 = \frac{3}{2}, \beta_2 = 0
 \]

- Plugging these into (***) for \(r = 2 \) gives
 \[
 \left[\alpha_0 - (\Delta t \lambda_l) \beta_0 \right] + \left[\alpha_1 - (\Delta t \lambda_l) \beta_1 \right] \zeta + \left[\alpha_2 - (\Delta t \lambda_l) \beta_2 \right] \zeta^2 = 0
 \]
 \[
 \Rightarrow \left[(\Delta t \lambda_l) \frac{1}{2} \right] + \left[-1 - (\Delta t \lambda_l) \frac{3}{2} \right] \zeta + \left[1 \right] \zeta^2 = 0
 \]

- Can solve for \(\zeta \) to get
 \[
 \zeta = \frac{1 + (\Delta t \lambda_l) \frac{3}{2}}{2} \pm \sqrt{\left[1 + (\Delta t \lambda_l) \frac{3}{2} \right]^2 - 4 \left[(\Delta t \lambda_l) \frac{1}{2} \right]}
 \]

- Evaluate this for many different \(\Delta t \lambda_l \) values and identify where \(|\zeta| < 1 \)