
Error in Finite Difference Methods

We have now cataloged a variety of one-step and multi-step methods.
But under what settings is it appropriate to use a given method? We
need to characterize the error and stability properties of finite differ-
ence methods to answer this question. We now discuss truncation
error, notions of zero stability to more fully characterize the conver-
gence of a method, and notions of absolute stability to determine
which values of ∆t are appropriate to use for a given method and
IVP.

1 Global & truncation error: one-step and multi-step methods

Now that we have developed a framework for deriving both one-
step and multi-step methods, we turn here to an equally important
question: how do we determine the accuracy of the method we
have derived. Our ultimate interest is in the difference between the
approximate solution we compute and the exact solution at a given
time instance. This all-important quantity is called the global error.

Global error

The global error of a finite-difference method at some time
instance tk is defined as ek := u(tk) − uk. Often, this error is
expressed succinctly using an appropriately defined norm || · ||
as ||ek||.

There are two sources that contribute to this global error. We will
first illustrate these different sources on the forward Euler method.
For this method, notice that

1. Even if we had the exact solution u(t), applying the forward
Euler method to this solution via u(tk+1) = u(tk) + ∆t f (u(tk), tk)

would still lead to an error. We refer to the associated error as the
truncation error, and define it as follows:

In words, the truncation error associ-
ated with the forward Euler method
is the error in applying the method to
advance the exact solution by one time
increment ∆t.

τk =
u(tk+1)− u(tk)

∆t
− f (u(tk), tk) (1)

Note that many other texts define
the truncation error by multiplying
our truncation error by ∆t. I find that
definition unhelpfully confusing, and
we will use the convention described in
(1).

2. We do not in general have access to the exact solution at time tk,
and so we typically inherit a cumulative error from having applied
the forward Euler method k time increments from the exact initial
condition.

error in finite difference methods 2

These two sources of error—the truncation error introduced at a
single time increment and the cumulative error inherited over sev-
eral previous time increments—together make up the global error. What is the truncation error associated

with the trapezoid method?We illustrated these two contributions to the global error using the
forward Euler method, but the same sources exist for any finite-
difference method applied to an IVP. We will first focus on the trunca-
tion error and subsequently relate this to the global error.

Truncation error: one-step methods

To avoid cumbersome algebra, we will work with the forward
Euler method (the process is identical for other one-step methods).
For the forward Euler method, the truncation error is

τk =
u(tk+1)− u(tk)

∆t
− f (u(tk), tk)

=
u(tk+1)− u(tk)

∆t
− .u(tk) [using the definition of an IVP]

=
u(tk+1)− u(tk)

∆t
− u(tk+1)− u(tk)

∆t
+ O(∆t)

[using a Taylor series expansion of u(tk) about tk+1]

=⇒ τk = O(∆t)
(2)

One can use an analogous process to show that Heun’s method
has a truncation error τk = O(∆t2) and the four-stage Runge-Kutta
method has a truncation error τk = O(∆t4).

Test yourself by deriving the scaling of
the truncation error for Heun’s method.

Truncation error: multi-step methods

One difference between one-step and multi-step methods is that
the truncation error is easier to define generally for multi-step meth-
ods, since multi-step methods can be readily cast in the form (??).
Given this fact, we can write the truncation error as

Truncation error: multi-step methods

An r-step method defined using (??) has a truncation error
given by

τk =
1

∆t

[
k+1

∑
j=k−r+1

αj−(k−r+1)u(tj)−

∆t
k+1

∑
j=k−r+1

β j−(k−r+1) f
(

u(tj), tj

)] (3) This definition is entirely analogous to
our definition for one-step methods:
the truncation error remains the error
associated with advancing the exact
solution one time step using the finite-
difference method.

The general definition (??) also enables a clean derivation of the

error in finite difference methods 3

truncation error. Noting that f
(

u(tj), tj

)
=

.u(tj), and that

u(tj) = u(tk) + (j− k)∆t .u(tj) +
1
2
(j− k)2∆t2 ..u(tj) + · · ·

.u(tj) =
.u(tk) + (j− k)∆t..u(tj) +

1
2
(j− k)2∆t2 ...u(tj) + · · ·

(4)

the truncation error becomes

τk =
1

∆t

(
k+1

∑
j=k−r+1

αj−(k−r+1)

)
u(tk) +

(
k+1

∑
j=k−r+1

[
(j− k)αj−(k−r+1) − β j−(k−r+1)

])
.u(tk)+

∆t

(
k+1

∑
j=k−r+1

[
1
2
(j− k)2αj−(k−r+1) − (j− k)β j−(k−r+1)

])
..u(tk) + · · ·+

∆tq−1

(
k+1

∑
j=k−r+1

[
1
q!
(j− k)qαj−(k−r+1) −

1
(q− 1)!

(j− k)q−1β j−(k−r+1)

])
dqu
dtq

∣∣∣
tk

(5)
In order for a multi-step method to converge, we must have that

τk → 0 as ∆t → 0. From (5), it is clear that for this condition to be
satisfied, we require (at minimum)

A multi-step method that satisfies (6) is
called consistent.

k+1

∑
j=k−r+1

αj−(k−r+1) = 0,
k+1

∑
j=k−r+1

[
(j− k)αj−(k−r+1) − β j−(k−r+1)

]
= 0

(6)
More generally, if the first p + 1 terms in (5) vanish, the truncation
error scales as O(∆tp).

Let us make this more concrete with an example. For the 2-step
Adams-Bashforth method,

α0 = 0, α1 = −1, α2 = 1

β0 = −1
2

, β1 =
3
2

, β2 = 0
(7)

For this set of coefficients, we observe that the first condition in (6)
is satisfied: α0 + α1 + α2 = 0− 1 + 1 = 0. For the second condition,
noting that r = 2, we have

k+1

∑
j=k−2+1

[
(j− k)αj−(k−2+1) − β j−(k−2+1)

]

=

[(
− α0 − β0

)
+
(

0α1 − β1

)
+
(

α2 − β2

)]
=

[(
0 +

1
2

)
+

(
0(−1)− 3

2

)
+

(
1− 0

)]
= 0

(8)

Thus, both conditions in (6) are satisfied and the method is consistent.

error in finite difference methods 4

But we can say more! Considering the ∆t term in (5), we see that

k+1

∑
j=k−r+1

[
1
2
(j− k)2αj−(k−r+1) − (j− k)β j−(k−r+1)

]

=

[(
1
2

α0 + β0

)
+

(
1
2
(0)α1 − 0β1

)
+

(
1
2

α2 − β2

)]
=

[(
1
2
(0)− 1

2

)
+

(
1
2
(0)(−1)− (0)

3
2

)
+

(
1
2
(1)− 0

)]
= 0

(9)

If we were to evaluate the O(∆t2) term, we would find that it did not Recall the error of O(∆t) error associ-
ated with the forward Euler method.
The O(∆t2) error of the 2-step Adams-
Bashforth method reveals the reward of
its added complexity.

vanish, and the truncation error for this method is therefore O(∆t2).

Relating the truncation error to the global error

A key question is: how does this truncation error relate to the
global error ek—the quantity that we really care about? Another way
to ask this question is “how does the contribution of error that we
inherited from using our numerical method for the k previous time
steps affect the truncation error τk?”

We do not have time to dwell on the details of this question, but
the punchline is that the global error scales at the same rate as the
truncation error provided that the numerical method obeys a prop-
erty referred to as stability. We will discuss the concept of stability in
the next lecture.

We left the last lecture by stating that the truncation error correctly
determined the accuracy of a numerical method, provided that the
numerical method was stable. We will make this notion of stability
precise in this lecture.

First, why do we need the concept of stability at all? That is, why
is the truncation error not sufficient to predict the accuracy of a
numerical method. The reason is that the truncation error is derived
using a Taylor series, which is only valid for sufficiently small ∆t.
To illustrate the dependence of the ‘right ∆t’ on the finite-difference
method being considered, we will consider the model problem

.u = Λu

u(t0) = u0
(10)

where Λ is a diagonal matrix

Λ =


λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

... · · ·
...

...
0 0 · · · λn−1 0
0 0 · · · 0 λn

 (11)

error in finite difference methods 5

with each λl ∈ C, l = 1, . . . , n. Using the definition of eΛt from lecture
11, the jth component of the exact solution is given by

uj(t) = eλj(t−t0)(u0)j (12)

where (u0)j denotes the jth entry of u0. The real part of λj gives
the growth or decay rate of uj(t) and the imaginary part gives the
frequency of oscillation.

Why do we allow λl (l = 1, . . . , n) to
be complex? Consider the classical IVP
representative of a harmonic oscillator
(such as an undamped spring-mass
system): ..y = −ω2y

y(0) = y0.y(0) = v0

(13)

where the constant ω2 is used to
emphasize that the constant is positive
(in the mass-spring system, having a
negative constant would correspond to
a negative spring stiffness!)

Note that this IVP can be represented
as a first-order system of IVPs by
defining v =

.y, z = [y, v]T , and
z0 = [y0, v0]

T . We can therefore recast
(13) as .z = Az

z(0) = z0
(14)

where

A =

[
0 1
−ω2 0

]
(15)

You may recognize that A has an
eigen-decomposition A = VΛV−1

where

V =

[1
2 i − 1

2 i√
3
4

√
3
4

]

Λ =

[
i
√

ω 0
0 −i

√
ω

] (16)

Premultiplying (14) by V−1 and defin-
ing u = V−1z results in the linear
system .u = Λu

u(0) = u0
(17)

which is identical to (10). Note that,
by virtue of (16), the entries of Λ are
complex. Thus, even when modeling
real physical systems, the associated
first-order IVP can involve complex
entries.

2 Absolute stability for one-step methods

Let’s consider applying the forward Euler method to this model IVP.
Doing this gives us an expression to solve for uk+1 using known
information at time tk:

uk+1 = uk + ∆tΛuk

= (I + ∆tΛ)uk

= (I + ∆tΛ)(I + ∆tΛ)uk−1

= (I + ∆tΛ)k+1u0

(18)

And since Λ is diagonal, the jth entry in uk+1 can be expressed sim-
ply as

(uk+1)j = (1 + ∆tλj)
k+1(u0)j (19)

Thus, if |1 + ∆tλj| > 1, the iterates (uk+1)j will grow without bound
as k tends to infinity. That is, the numerical solution will blow up

when
√
(1 +R(∆tλj))2 + I(∆tλj)2 > 1, where R(∆tλj) and I(∆tλj)

denote the real and imaginary parts of ∆tλj, respectively. Notice that
it is the quantity ∆tλj that is important, and not ∆t or λj separately,
that determines the stability of a method. We say that the forward
Euler method is absolutely stable when |1 + ∆tλj| < 1.

A picture of this might make things
clearer. The forward Euler method is
stable when ∆tλj is contained within
the filled in circle, and unstable oth-
erwise. Notice that, by virtue of (12),
the exact solution is stable whenever
R(λj) < 0. This gives us an indication
of the frail stability properties of this
method: if R(λj) << −2, then even
though the true solution will decay in
time, we will have to use a very small
∆t to stably simulate the system.

Figure 1: Absolute stability region for
the forward Euler method.

How does the stability region of the forward Euler method com-
pare with that of other methods we were exposed to earlier? Let us
consider the backward Euler method. When applied to the model
IVP (10), the backward Euler method becomes

uk+1 = uk + ∆tΛuk+1

uk+1 = (I − ∆tΛ)−1uk

= [(I − ∆tΛ)−1]k+1u0

(20)

For the diagonal matrix Λ, the jth entry in uk+1 can be expressed
simply as

(uk+1)j =
1

(1− ∆tλj)k+1 (u0)j (21) A figure is again useful here. Notice
the fruits we have reaped from using
an implicit Euler method: the method
is absolutely stable so long as ∆tλj does
not lie in the unit circle centered at
∆tR(λj) = 1.

Figure 2: Absolute stability region for
the backward Euler method.

Thus, the backward Euler method is absolutely stable when 1/|1−
∆tλj| < 1.

error in finite difference methods 6

We will consider one more example: the RK4 scheme. When
applied to the model problem (10), RK4 can be expressed as

uk+1 = uk +
1
6

∆t

{
Λuk + 2Λ

(
uk +

1
2

∆tΛuk

)
+

2Λ

(
uk +

1
2

∆tΛ
(

uk +
1
2

∆tΛuk

))
+

Λ

[
uk + ∆tΛ

(
uk +

1
2

∆tΛ
(

uk +
1
2

∆tΛuk

))]}

=

{
I + ∆tΛ +

1
2
(∆tΛ)2 +

1
6
(∆tΛ)3 +

1
24

(∆tΛ)4
}

uk

=

{
I + ∆tΛ +

1
2
(∆tΛ)2 +

1
6
(∆tΛ)3 +

1
24

(∆tΛ)4
}k+1

u0

(22)

For the RK4 method, the stability region
is larger than for the forward Euler
method but not as extensive as the
backward Euler method.

Figure 3: Absolute stability region for
the RK4 method.

Again, the diagonal nature of Λ enables a simple representation of
the jth entry of uk+1:

(uk+1)j =

{
1 + ∆tλj +

1
2
(
∆tλj

)2
+

1
6
(
∆tλj

)3
+

1
24
(
∆tλj

)4
}k+1

(u0)j

(23)
How are we drawing the figures in the margins? Let’s generalize

the approach for determining stability regions. For the forward Euler
method, backward Euler method, and RK4, we were able to relate
(uk+1)j to (u0)j using a function of ∆tλj. It turns out that this is true
for one-step methods in general. That is, for one-step methods we
can write (uk+1)j = R(∆tλj)(u0)j. E.g., R(∆tλj) = 1 + ∆tλj +

1
2 (∆tλj)

2 +
1
6 (∆tλj)

3 + 1
24 (∆tλj)

4 for RK4.Since it is the quantity ∆tλj that is important, and not ∆t or λj

separately, it is customary to define w = ∆tλj. This allows us to
rewrite the relation between (uk+1)j and (u0)j more succinctly as Note that w ∈ C since λj ∈ C

(uk+1)j = Rk+1(w)(u0)j (24)

In this notation, a one-step method is stable when |R(w)| < 1. This
gives us a mechanism for computing the stability region of a one-
step method: we need only determine R(w) for the given one-step
method and identify the values of w for which |R(w)| < 1. Here is a
code that plots the stability region for the backward Euler method.

Listing 1: Code snippet for computing the absolute stability region
for the Backward Euler method

%define real and imaginary parts of w

wr = -5 : 0.01 : 3;

wi = -4 : 0.01 : 4 ;

%create meshgrid

error in finite difference methods 7

[Wr, Wi] = meshgrid(wr, wi);

%define |R(w)| for BE

BE_sc = abs(1./(1 - (Wr + 1i*Wi)));

%saturate values for easier coloring

BE_sc(BE_sc < 1) = 1;

BE_sc(BE_sc > 1) = 2;

%UIUC-themed colormap

cmap = [1 1/2 0; 1 1 1];

%Create a contour plot of the stability region

contourf(Wr, Wi, BE_sc, [1 2])

colormap(cmap), axis equal

For reference, the stability regions of the other methods we ex-
plored in earlier lectures are presented in figure 4.

(a) (b) Figure 4: Stability region for Heun’s
method a) and the trapezoid method b).Let us summarize this important result of absolute stability for one

step methods.

Absolute stability criterion: one-step methods

A one-step method is called absolutely stable for values of ∆tλl

that yield |R(∆tλl)| < 1. The method is unstable for values of
∆tλl that do not satisfy that criteria.

3 Absolute stability for multi-step methods

As with one-step methods, we must again embrace the fact that all of
our computations involve a finite ∆t. In this vein, we characterize the
finite values of ∆t that lead to a stable solution with a given method

error in finite difference methods 8

using the concept of absolute stability. We will again define this
concept with respect to the model problem (10). Remember that this model IVP is

defined as
.u = Λu

u(t0) = u0

where Λ is the diagonal matrix

Λ =


λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

... · · ·
...

...
0 0 · · · λn−1 0
0 0 · · · 0 λn


with each λl ∈ C, l = 1, . . . , n.

Applying a multi-step method to this model problem results in the
expression

k+1

∑
j=k−r+1

αj−(k−r+1)uj = ∆t
k+1

∑
j=k−r+1

β j−(k−r+1)Λuj (25)

which can be rearranged as

k+1

∑
j=k−r+1

[
αj−(k−r+1) I − ∆tβ j−(k−r+1)Λ

]
uj = 0 (26)

As occurred for one-step methods, the diagonal form of Λ enables
us to write out the equation for each component of uj. In particular,
the lth component of uj, (uj)l , can be solved for via

k+1

∑
j=k−r+1

[
αj−(k−r+1) − ∆tβ j−(k−r+1)λl

]
(uj)l = 0 (27)

How can we solve this equation for (uj)l? Notice that if we define
a variable ζ ∈ R and replace (uj)l in (27) with ζ j+r−1, we arrive at the
expression

k+1

∑
j=k−r+1

[
αj−(k−r+1) − ∆tβ j−(k−r+1)λl

]
ζ j+r−1 = 0 (28)

To make our notation simpler, we can divide by ζk and rework our
indexing to get

r

∑
j=0

[
αj − ∆tβ jλl

]
ζ j = 0 (29)

Some extensions must be made in the
derivation allowing for non-distinct
roots, though the conclusions are
unchanged.

This polynomial equation in terms of ζ has r roots. If these roots
are distinct, we may denote them as ζ1, . . . , ζr. Each of the roots
satisfies (28) and, as a result, (27). Notice that any linear combination
of the roots also satisfies (28). Thus, we can construct a (uj)l that
solves (27) by writing (uj)l as a linear combination of the roots of
(29):

(uj)l =
r

∑
m=1

cmζ
j
m (30)

The relation (30) demonstrates that if
any of the roots ζ1, . . . , ζr have modulus
greater than one, (uj)l will grow
without bound as j→ ∞. Thus, we will
define absolute stability in terms of the
values of ∆tλl that lead to roots with
modulus less than one.

We have finally arrived at our desired result: we now have a
means to establish a meaningful criterion for whether a multi-step
method will be stable or not.

error in finite difference methods 9

Absolute stability criterion: multi-step methods

An r-step method is called absolutely stable for values of ∆tλl

that yield solutions ζ1, . . . , ζr to (29) satisfying |ζ1| < 1,
|ζ2| < 1, . . . , |ζr| < 1. The method is unstable for values of
∆tλl that do not satisfy that criteria.

Let us make this definition of absolute stability concrete by consid-
ering an example. Recall that the coefficients for the 2-step Adams-
Bashforth method are

α0 = 0, α1 = −1, α2 = 1

β0 = −1
2

, β1 =
3
2

, β2 = 0
(31)

The polynomial equation (29) therefore becomes[
α0 − (∆tλl)β0

]
+

[
α1 − (∆tλl)β1

]
ζ +

[
α2 − (∆tλl)β2

]
ζ2 = 0

=⇒
[
(∆tλl)

1
2

]
+

[
− 1− (∆tλl)

3
2

]
ζ +

[
1
]

ζ2 = 0

(32)
We may solve this quadratic for ζ in terms of ∆tλl :

ζ =

[
1 + (∆tλl)

3
2
]
±
√[

1 + (∆tλl)
3
2
]2 − 4

[
(∆tλl)

1
2

]
2

(33)

We can therefore plot the stability regions for the 2-step Adams-
Bashforth method as follows. First, prescribe a range of values of
∆tλl . For each value of ∆tλl , compute the two roots of (32) using (33).
Next, determine which root has the largest modulus (call it ζmax) and
store the modulus, |ζmax|, for the given value of ∆tλl . The following
code uses this procedure to plot the absolute stability region of the
2-step Adams-Bashforth method. The code that implements this
procedure is provided in the snippets below.

Let us make the example more vivid
with a figure:

Figure 5: Absolute stability region for
the 2-step Adams-Bashforth method.

Listing 2: Code snippet for the absolute stability region for AB2

clear all, close all, clc

%Range of values for dt*lambda_l

dtl_r = -1 : 0.0025 : 0;

dtl_i = -0.81 : 0.0025 : 0.81 ;

%make meshgrid of values

[dtlr, dtli] = meshgrid(dtl_r, dtl_i);

%write as complex number

dtl = dtlr + 1i*dtli;

error in finite difference methods 10

%initialize the root matrix

r = zeros(size(dtl));

%For each value of dt*lambda_l...

for j = 1 : length(dtl(:,1))

for jj = 1 : length(dtl(1,:))

%0^th order coeff

p0 = 1/2*dtl(j,jj);

%1^st order coeff

p1 = -1-3/2*dtl(j,jj);

%2^nd order coeff

p2 = 1;

%Get largest root and store its modulus

r(j,jj) = max(abs(roots([p2, p1, p0])));

end

end

%saturate for easy coloring

r(abs(r) > 1) = 2;

r(abs(r) <= 1) = 1;

%UIUC colormap

cmap = [1 1/2 0; 1 1 1];

%Plot stability region

contourf(dtlr, dtli, r, [1 2], ’edgecolor’,’none’)

shading flat

colormap(cmap)

axis equal

Note the use of the built-in roots

command in place of using (33) directly.
This handy function makes it easier to
generalize the procedure for plotting
stability regions to cases where the
polynomial function is higher order.

For completeness, we show the stability regions for other Adams
methods in figure 6. These figures were created using appropriately
adapted versions of the above code.

4 Convergence

Let us synthesize our results about truncation error and absolute
stability to determine when a method applied to an IVP will be
accurate.

error in finite difference methods 11

(a) (b) (c)

Figure 6: Stability region for the 3-
step Adams-Bashforth (a), 2-step
Adams-Moulton (b), and 3-step Adams-
Moulton (c) methods.

Convergence of numerical methods for IVPs

A numerical method for a method is convergent if and only if
it has a truncation error that goes to zero as ∆t → 0 and has
an absolute stability region that includes λl∆t = 0. Moreover,
if the method is convergent, the rate of convergence of the
method is equal to the order of the truncation error (that is,
the global error will decay at the same rate as the truncation
error).

	Global & truncation error: one-step and multi-step methods
	Absolute stability for one-step methods
	Absolute stability for multi-step methods
	Convergence

