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Methods

Today:


• Introduce multi-step methods for solving initial value 
problems (still a finite difference method)
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Where are we up to now?
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We developed a procedure for solving IVPs of the form 

·u = f(u, t)
u(t0) = u0

(1)

(2)

u(tk+1) − u(tk) = ∫
tk+1

tk

f(u, t)dt

by integrating the ODE (1):

and using a local polynomial interpolation for . f

Last time, we interpolated  using only information from , which led to one-step 
methods.

f t ∈ [tk, tk+1]

This time, we will interpolate  using information from  ( ), which leads to 
multi-step methods.

f t ∈ [tk−j, tk+1] j ≥ 1

e.g., FE used  and BE used f(uk, tk) f(uk+1, tk+1)



Adams Bashforth methods: a class of explicit multi-
step methods
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One class of multi-step methods are the Adams-Bashforth methods, which interpolate  on 
 ( )

f
t ∈ [tk−j, tk] j ≥ 1 i.e., the methods are explicit!

The general formula for an -step Adams-Bashforth method is r

Lecture 12
Initial value problems: multi-step methods and trun-

cation error

In the last lecture, we considered a variety of one-step methods. We
will go through a similar process with multi-step methods.

1 Multi-step methods

You will recall from the last lecture that finite difference methods
for IVPs amount to locally interpolating the IVP .u = f (u, t). We
moreover identified that many (but not all!) of these interpolation
procedures were derived by integrating the IVP from tk to tk+1:

u(tk+1)� u(tk) =
Z

tk+1

tk

f (u, t) dt (1)

and using a local interpolation rule to approximate the righthand
side term.

Remember that (1) arose from integrat-
ing the IVP from tk to tk+1 and noting
that the left-hand side

R
tk+1

tk

.u dt could
be exactly represented as u(tk+1)� u(tk).

In this lecture, we will motivate the general definition of multi-step
methods—which applies irrespective of whether the method was
derived from (1)—through a class of methods called Adams methods,
which are defined using (1).

In a few lectures, we will consider
multi-step methods derived using the
differential form .u = f (u, t) instead
of the integrated variant (1). These
methods will arise in the context of
particularly nefarious IVPs referred
to as stiff equations. We will define
these and characterize the challenges in
simulating them soon!

Notice that since the left-hand side of (1) is exactly correct, the
inexactness in our numerical approximation will arise from interpo-
lating f (u, t) locally near the interval t 2 [tk, tk+1]. A natural means
to reduce the error in this approximation is to use a higher order
approximation of f over this time interval. Whereas multi-stage one-
step methods do this by creating additional points within the time
interval (recall, e.g., the RK4 method from the last lecture), multi-step
methods utilize the broader interval t 2 [tk�j, tk+1] (j � 1).

Note the value of utilizing the earlier
time instances t 2 [tk�j, tk�1]: we
already have the solution at these times,
so we can avoid additional functional
evaluations!

Adams methods approximate f (u, t) as a polynomial over this
extended interval, and integrate this polynomial from tk to tk+1 to
evaluate the righthand side of (1). Adams methods can be divided
into explicit (Adams-Bashforth) and implicit (Adams-Moulton) methods.

Adams-Bashforth methods (explicit): Since Adams-Bashforth methods are
explicit, the interval does not involve
tk+1.

To arrive at an r-step Adams-Bashforth method, we represent f as
a degree r � 1 polynomial using the interval t 2 [tk�r+1, tk]. The result
of this process is that (1) can be approximated as Note that, as with one-step methods,

we have replaced u(tk) with uk to reflect
the fact that we do not have access to
the true solution.uk+1 � uk = Dt

k

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (2)

where the b j�(k�r+1) (j = k � r + 1, . . . , k) are determined by our
polynomial interpolant. Let us consider some examples.

The somewhat cumbersome subscript
on b ensures that the index runs from
0, . . . , r � 1.This formula can feel unwieldy, so let’s look at some examples:
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2-step (degree 1 interpolant) Adams-Bashforth method:

uk+1 � uk =
Dt

2
⇥
� f (uk�1, tk�1) + 3 f (uk, tk)

⇤
(3) There is no mystery in how we obtained

the various b coefficients for these
2-step and 3-step example cases. In
the case of the 2-step method, we
expressed f in terms of our old friends
the Lagrange polynomials. Specifically,

f (u, t) ⇡ f (uk�1, tk�1)Lk�1(t)

+ f (uk , tk)Lk(t)
(4)

We then integrated this from tk to tk+1
to arrive at (3). How would you derive
the 3-step method?

3-step (degree 2 interpolant) Adams-Bashforth method:

uk+1 � uk =
Dt

12
⇥
5 f (uk�2, tk�2)� 16 f (uk�1, tk�1)

+ 23 f (uk, tk)
⇤ (5)

Of course, there is no need for us to stop here. We could continue
to derive Adams-Bashforth methods using increasingly high-order
polynomials. Extremely high-order Adams-Bashforth methods are The rarity of high-order Adams meth-

ods is rooted in the fact that high-order
polynomial interpolation in uniformly
spaced points is a recipe for disaster.

rarely encountered in practice—indeed, Adams-Bashforth methods
involving more than four steps are not often seen.

Adams-Moulton methods (implicit): Just as with one-step methods, we will
see that the extra work incurred from
these implicit methods comes with the
benefit of larger stability regions.

To arrive at an r-step Adams-Moulton method, we use the larger
interval t 2 [tk�r+1, tk+1]. To accommodate the extra time instance
tk+1, we represent f as a degree r polynomial (not r � 1). The result Note that an r-step Adams-Moulton

method involves a degree r polynomial
interpolant, whereas an r-step Adams-
Moulton method involves a degree r � 1
polynomial interpolant

of this process is that (1) can be approximated as

uk+1 � uk = Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (6)

where again the b j�(k�r+1) (j = k � r + 1, . . . , k + 1) are determined by
our polynomial interpolant. Let us consider some examples.

2-step (degree 2 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

12
⇥
� f (uk�1, tk�1) + 8 f (uk, tk) + 5 f (uk+1, tk+1)

⇤
(7)

3-step (degree 3 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

24
⇥

f (uk�2, tk�2)� 5 f (uk�1, tk�1)

+ 19 f (uk, tk) + 9 f (uk+1, tk+1)
⇤ (8)

The Adams-Bashforth and Adams-Moulton methods form an
important class of multi-step methods, but are not the only family
of multi-step methods in existence. A more general expression that
encompasses a wider range of multi-step methods (including the
Adams-Bashforth and Adams-Moulton methods) is
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⇤
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the various b coefficients for these
2-step and 3-step example cases. In
the case of the 2-step method, we
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the Lagrange polynomials. Specifically,

f (u, t) ⇡ f (uk�1, tk�1)Lk�1(t)

+ f (uk , tk)Lk(t)
(4)

We then integrated this from tk to tk+1
to arrive at (3). How would you derive
the 3-step method?

3-step (degree 2 interpolant) Adams-Bashforth method:
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Adams-Moulton methods (implicit): Just as with one-step methods, we will
see that the extra work incurred from
these implicit methods comes with the
benefit of larger stability regions.

To arrive at an r-step Adams-Moulton method, we use the larger
interval t 2 [tk�r+1, tk+1]. To accommodate the extra time instance
tk+1, we represent f as a degree r polynomial (not r � 1). The result Note that an r-step Adams-Moulton

method involves a degree r polynomial
interpolant, whereas an r-step Adams-
Moulton method involves a degree r � 1
polynomial interpolant

of this process is that (1) can be approximated as

uk+1 � uk = Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (6)

where again the b j�(k�r+1) (j = k � r + 1, . . . , k + 1) are determined by
our polynomial interpolant. Let us consider some examples.

2-step (degree 2 interpolant) Adams-Moulton method:
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Dt

12
⇥
� f (uk�1, tk�1) + 8 f (uk, tk) + 5 f (uk+1, tk+1)

⇤
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3-step (degree 3 interpolant) Adams-Moulton method:
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important class of multi-step methods, but are not the only family
of multi-step methods in existence. A more general expression that
encompasses a wider range of multi-step methods (including the
Adams-Bashforth and Adams-Moulton methods) is

2-step (AB2)

3-step (AB3)

How would we derive this? Very similar to Forward 
Euler, except now interpolate  as a line using the 

points  and .
f

tk−1 tk



Adams Moulton methods: a class of implicit multi-step 
methods
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One class of multi-step methods are the Adams-Moulton methods, which interpolate  on 
 ( )

f
t ∈ [tk−j, tk+1] j ≥ 1 i.e., the methods are implicit!

The general formula for an -step Adams-Moulton method is r

This formula can (again) feel unwieldy, so let’s look at some examples:

2-step (AM2)

3-step (AM3)

How would we derive this? Very similar to Forward 
Euler, except now interpolate  as a quadratic 

function using the points  , , and 
f

tk−1 tk tk+1
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2-step (degree 1 interpolant) Adams-Bashforth method:

uk+1 � uk =
Dt

2
⇥
� f (uk�1, tk�1) + 3 f (uk, tk)

⇤
(3) There is no mystery in how we obtained

the various b coefficients for these
2-step and 3-step example cases. In
the case of the 2-step method, we
expressed f in terms of our old friends
the Lagrange polynomials. Specifically,

f (u, t) ⇡ f (uk�1, tk�1)Lk�1(t)

+ f (uk , tk)Lk(t)
(4)

We then integrated this from tk to tk+1
to arrive at (3). How would you derive
the 3-step method?

3-step (degree 2 interpolant) Adams-Bashforth method:

uk+1 � uk =
Dt

12
⇥
5 f (uk�2, tk�2)� 16 f (uk�1, tk�1)

+ 23 f (uk, tk)
⇤ (5)

Of course, there is no need for us to stop here. We could continue
to derive Adams-Bashforth methods using increasingly high-order
polynomials. Extremely high-order Adams-Bashforth methods are The rarity of high-order Adams meth-

ods is rooted in the fact that high-order
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rarely encountered in practice—indeed, Adams-Bashforth methods
involving more than four steps are not often seen.

Adams-Moulton methods (implicit): Just as with one-step methods, we will
see that the extra work incurred from
these implicit methods comes with the
benefit of larger stability regions.

To arrive at an r-step Adams-Moulton method, we use the larger
interval t 2 [tk�r+1, tk+1]. To accommodate the extra time instance
tk+1, we represent f as a degree r polynomial (not r � 1). The result Note that an r-step Adams-Moulton

method involves a degree r polynomial
interpolant, whereas an r-step Adams-
Moulton method involves a degree r � 1
polynomial interpolant

of this process is that (1) can be approximated as

uk+1 � uk = Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (6)

where again the b j�(k�r+1) (j = k � r + 1, . . . , k + 1) are determined by
our polynomial interpolant. Let us consider some examples.

2-step (degree 2 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

12
⇥
� f (uk�1, tk�1) + 8 f (uk, tk) + 5 f (uk+1, tk+1)

⇤
(7)

3-step (degree 3 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

24
⇥

f (uk�2, tk�2)� 5 f (uk�1, tk�1)

+ 19 f (uk, tk) + 9 f (uk+1, tk+1)
⇤ (8)

The Adams-Bashforth and Adams-Moulton methods form an
important class of multi-step methods, but are not the only family
of multi-step methods in existence. A more general expression that
encompasses a wider range of multi-step methods (including the
Adams-Bashforth and Adams-Moulton methods) is

The same as for Adams Bashforth except

now the sum goes to  instead of ,


because these methods are implicit!  
k + 1 k
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of this process is that (1) can be approximated as

uk+1 � uk = Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (6)

where again the b j�(k�r+1) (j = k � r + 1, . . . , k + 1) are determined by
our polynomial interpolant. Let us consider some examples.

2-step (degree 2 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

12
⇥
� f (uk�1, tk�1) + 8 f (uk, tk) + 5 f (uk+1, tk+1)

⇤
(7)

3-step (degree 3 interpolant) Adams-Moulton method:

uk+1 � uk =
Dt

24
⇥

f (uk�2, tk�2)� 5 f (uk�1, tk�1)

+ 19 f (uk, tk) + 9 f (uk+1, tk+1)
⇤ (8)

The Adams-Bashforth and Adams-Moulton methods form an
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A broader class of multi-step methods
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A broader class of multi-step methods (that includes the Adams methods) can be expressed 
as
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General form: multi-step methods for IVPs

An r-step method is defined by

k+1

Â
j=k�r+1

aj�(k�r+1)uj = Dt

k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (9)

where aj�(k�r+1), b j�(k�r+1) 2 R and j = k � r + 1, . . . , k + 1.

Why do we incorporate more terms
on the left-hand side than uk+1 and
uk when we know the left-hand side
of (??) can be evaluated exactly as
u(tk+1) � u(tk)? This gives us extra
flexibility to cancel out additional error
terms that arise from a Taylor series
expansion of the various f (uj, tj) terms
(j = k � r + 1, . . . , k + 1).

Notice that the Adams-Bashforth
and Adams-Moulton methods can be
represented using the form (9) with
ar = 1, ar�1 = �1, am = 0 (m < r � 1).
What are the b coefficients for the 3-step
Adams-Bashforth method?

Starting values:
There remains one unexplored feature to successfully implement-

ing a multi-step method. Consider that we are at time t0 and wish
to advance to t1. An r-step method would require information of the
approximate solution at times t�r+1, . . . , t�1, t0, t1. Of course, we do
not have access to information prior to our initial time instance t0.
How do we remedy this? We use a one-step method of appropriate
accuracy to advance the solution to time tr�1, and let our multi-step
method take over from there.

We have now cataloged a variety of multi-step methods. But under
what settings is it appropriate to use a given multi-step method?
As with one-step methods, we need to characterize the error and
stability properties of multi-step methods to answer this question.
We will end this lecture with a discussion of the truncation error. In
the following lecture, we will incorporate the notions of zero stability
to more fully characterize the convergence of the method, and of
absolute stability to determine which values of Dt are appropriate to
use for a given method and IVP.

2 Global & truncation error: one-step and multi-step methods

Now that we have developed a framework for deriving both one-
step and multi-step methods, we turn here to an equally important
question: how do we determine the accuracy of the method we
have derived. Our ultimate interest is in the difference between the
approximate solution we compute and the exact solution at a given
time instance. This all-important quantity is called the global error.

RHS is the same as in Adams methods

allows for a more general LHS than the  
associated with the Adams methods

uk+1 − uk

Exercise. Write out the  and  coefficients for AB2α β

First, AB2 is a 2 step method so r = 2

Thus, the summation goes from  to  and the expression above is 
k − 1 k + 1
α0uk−1 + α1uk + α2uk+1 = Δt(β0f(uk−1, tk−1) + β1f(uk, tk) + β2f(uk+1, tk+1))

Comparing this expression to that from slide 3:


α0 = 0, α1 = − 1, α2 = 1, β0 = −
1
2

, β1 =
3
2

, β2 = 0



A note: how do you “start” multi-step methods? 
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method involves a degree r polynomial
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Moulton method involves a degree r � 1
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of this process is that (1) can be approximated as
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k+1

Â
j=k�r+1

b j�(k�r+1) f (uj, tj) (6)

where again the b j�(k�r+1) (j = k � r + 1, . . . , k + 1) are determined by
our polynomial interpolant. Let us consider some examples.

2-step (degree 2 interpolant) Adams-Moulton method:
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12
⇥
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3-step (degree 3 interpolant) Adams-Moulton method:
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24
⇥

f (uk�2, tk�2)� 5 f (uk�1, tk�1)
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important class of multi-step methods, but are not the only family
of multi-step methods in existence. A more general expression that
encompasses a wider range of multi-step methods (including the
Adams-Bashforth and Adams-Moulton methods) is

Consider AB2:

Once we have , we can get  from  and . And keep advancing in time from 
there.

u1 u2 u1 u0

To get  we would need  and u1 u0 u−1
Doesn’t exist! Time starts at t0

So what do we do? Use a one step method of sufficient accuracy to get u1

More generally, for an -step method, use a one step method of sufficient accuracy 
to get , and then let the multi-step method take over from there.

r
u1, …, ur−1


