
BRAND ARCHITECTURE
Block I Logo & Illinois Wordmark | Version 2.0 Lecture 10: Initial Value

Problem

Today:

• New topic: Initial value problems

• Introduce numerical solution procedure: finite difference

methods

• Describe a class of methods called one-step methods

1

Based on local polynomial interpolation!

Where are we up to now?

2

We can now find a function, , that approximates a given function, , accurately on fa(x) f(x)
x ∈ [a, b]

Next few weeks: use these techniques to numerically approximate solutions to initial value
problems (IVPs):

Lecture 11
Initial value problems: introduction and one-step

methods

Now that we have developed numerical methods for approximating
functions and integrals, we will turn our attention to the more chal-
lenging task of numerically solving ordinary differential equations.

In turn, our study of numerical meth-
ods for ordinary differential equations
will prepare us to solve partial differen-
tial equations, which we will tackle in
the final portion of this class.The first class of problems that we will study in this category

are called initial value problems (IVPs). These equations are distinct
from the other dominant category of ordinary differential equations,
boundary value problems (BVPs). The key distinction between IVPs and
BVPs is this:

Whereas BVPs describe the static (equilibrium) response of a
system to external forcing, IVPs govern the dynamical time

evolution of a system to excitation.

1 Review of some IVP fundamentals

This philosophical distinction is borne out through a difference in the
governing equations, which may be expressed as Note that we are assuming the state

variable u is a vector. The scalar case is
a specific example with the dimension
of the vector equal to one. Thus, the
methods we develop here apply equally
to vector or scalar systems.
Whereas a prime was sometimes used
to denote a spatial derivative, the
overdot here indicates a time derivative.

.u = f (u, t)

u(t0) = u0
(1)

This mathematical description is intuitive based on the difference
between BVPs and IVPs highlighted above: whereas BVPs require
knowledge of the physical boundaries of the system, IVPs only
require information of the state at some initial time instance and
evolve according to the dynamics encoded in f .

At first glance, the definition of IVPs provided in (1) may appear
to omit Newton’s second law, which represents perhaps the most
important class of IVPs in engineering! When applied to systems of
constant mass, Newton’s second law is a second order system that
reads

M ..u = F(t)

u(t0) = u0
.u(t0) = v0

(2)

where M is a diagonal matrix containing the masses of the system
and F(t) describes the forces that drive the acceleration of the masses.
In fact, the definition (1) extends to these key systems as well. To see

Reminder: what is an IVP?·u = f(u, t)
u(t0) = u0

(1)

(2)

The solution strategy we will use is called a finite difference method:

Premise: For an integer k = 0,1,…

lecture 11 initial value problems: introduction and one-step methods 2

this, note that we can recast (2) as
" .u

..u

#
=

"
0 I
0 0

"
u
.u

#
+

"
0

M�1F(t)

#

"
u(t0).u(t0)

#
=

"
u0

v0

(3)

(assuming M is invertible). Defining z := [u, .u]T and z0 := [u0, v0]T

allows us to rewrite (3) as
.z = f (z, t)

z(t0) = z0
(4)

which therefore falls under the definition (1). In fact, nearly all
higher-order initial value problems can be recast as a first-order IVP
of the form (1), so assuming this definition is not very restrictive.

An important subset of IVPs occur when f (u, t) is a linear time-
invariant function acting on u. That is, when (1) simplifies to

.u = Au

u(t0) = u0
(5)

for some constant matrix A. You may recall that the matrix expo-
nential e

A(t�t0) is defined analogously
to its scalar counterpart in terms of an
infinite sum: e

A(t�t0) = I + A(t � t0) +
1
2 A2(t � t0)2 + 1

6 A3(t � t0)3 + · · ·

The solution to this linear IVP is

u(t) = e
A(t�t0)u0 (6)

Having recalled these critical facts about the properties of IVPs Why do local interpolation methods
predominate over global interpolation
(spectral collocation) and least-squares-
error-minimizing (spectral) methods
when numerically solving IVPs? The
reason is because, whereas BVPs are
based on information at all bound-
aries and therefore have solutions that
depend on global information, IVPs
only involve an initial condition and
evolve based on local derivative infor-
mation. These are perfect candidates for
locally-focused approaches!

and their analytical solutions, we can now sink our teeth into the
problem of computing numerical solutions to the IVP system (1). The
overwhelming majority of methods in the literature for achieving this
end take the form of finite difference methods; i.e., methods based
on locally interpolating the IVP. In this spirit, this chapter will be
devoted to finite-difference solutions to the IVP (1).

2 Finite-difference methods for IVPs

Finite-difference methods are implemented on IVPs by advancing the
dynamical system (1) in discrete time increments denoted by Dt. We assume Dt to be unchanging,

though many important methods
consider a Dt that changes in time
based on the dynamics.

Note that we distinguish between u(tk),
the true solution to the IVP (1) at time
tk = t0 + kDt, and uk, the approximate
solution at tk obtained through our
finite difference method.

Problem statement: finite-difference methods for IVPs

Given: uk ⇡ u(tk) = u(t0 + kDt)

Compute: uk+1 ⇡ u(tk+1) = u(tk + Dt).

The key idea is that we have an approximation for the state u at
time tk = t0 + kDt—which was obtained by advancing the state k

du
dt

 is our
approximation

at

uk

t = tk

 is the true value at u(tk) t = tk

 is the time step index

 is the actual time

k
t

We do NOT know

We DO know and

u
f(u, t) u(t0)

How do we approximate ?u(tk+1)

3

Notice that we can integrate the IVP eqn (1) from to :tk tk+1

∫
tk+1

tk

·udt = ∫
tk+1

tk

f(u, t)dt

⟹ u(tk+1) − u(tk) = ∫
tk+1

tk

f(u, t)dt [Fundamental theorem of calculus]

But what about the RHS? Interpolate !f

We will only consider local polynomial interpolation of in this classf

Today: we will explore some one step methods

Methods that use only information over the interval
 to interpolate [tk, tk+1] f

The resulting methods are called finite difference
methods

(3)

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Corollary

The simplest one step finite difference method:

Forward Euler

4

Let’s consider an example together.

Let’s interpolate on onto :f t ∈ [tk, tk+1] 𝒫0[tk, tk+1]

fa(u, t) = f(u(tk), tk)
Treat as a constant over , with constant

value given by evaluating at
f t ∈ [tk, tk+1]

f tk Could evaluate at other

times as well!

Then (3) becomes

u(tk+1) − u(tk) = f(u(tk), tk)∫
tk+1

tk

dt

u(tk+1) − u(tk) = f(u(tk), tk)Δt
Δt = tk+1 − tk

This suggests a formula for finding the approximation to given :u(tk+1) u(tk)

uk+1 = uk + Δtf(uk, tk)

(4)

(5)

Note. In (4) we use whereas in (5) we use u(tk) uk

The real at u
t = tk

Our approximation to the
real at u t = tk

Activity: Why did we need to approximate ?·u = f(u, t)

An example involving the forward Euler method

5

Consider the IVP
·u = − 3u
u(t = 0) = 4

Develop a strategy for approximating a solution forward in time using the Forward Euler
method.

By equation (5), uk+1 = uk + Δtf(uk, tk) = uk − 3(Δt)uk

So we would start at and pick our small time step . Then our
approximation to the solution at is

t = 0 Δt
Δt

uΔt = u0 − 3u0Δt

Once we have that we could advance the solution to , and so on t = 2Δt

(6)

(7)

= 4 − 3(4)Δt

We do NOT know so we can’t simply
integrate …

But we DO know …

u
·u = f (u, t) = − 3u

u(t0) = u0

Activity: derive the Backward Euler method

6

The FE method approximates as a constant using its value at . Instead, BE treats
it as a constant using its value at .

f t = tk
t = tk+1

In this setting:

(A) Derive the analog of equation (5)

(B) Develop a solution strategy, analogous to that of slide 5, for the IVP from equations

(6) and (7)

uk+1 = ??? (5)

Consider the IVP
·u = − 3u
u(t = 0) = 4

Activity: derive the Backward Euler method

7

Equation (3) becomes

u(tk+1) − u(tk) = f(u(tk+1), tk+1)∫
tk+1

tk

dt

u(tk+1) − u(tk) = f(u(tk+1), tk+1)Δt

This suggests a formula for finding the approximation to given :u(tk+1) u(tk)

uk+1 = uk + Δtf(uk+1, tk+1)

And applying this to the IVP (6)-(7) gives

uk+1 = uk + Δt(3uk+1)

⟹ (1 + 3Δt)uk+1 = uk

⟹ uk+1 =
uk

1 + 3Δt

So we could start using , and for some time step could get u0 = u(t = 0) = 4 Δt
u1, u2, …

A note: explicit versus implicit methods

8

Let’s compare the Forward and Backward Euler methods:

uk+1 = uk + Δtf(uk, tk)

For the IVP (6)-(7):

uk+1 = uk − 3(Δt)uk

uk+1 = uk + Δtf(uk+1, tk+1)

For the IVP (6)-(7):

uk+1 = uk + Δt(3uk+1)

Forward Euler Backward Euler

Evaluates at the

next time step

f
tk+1

Necessitates an extra step where
must be rearranged and solved for

uk+1

Would be extra hard if were nonlinear!
E.G., what if .

Would have to solve a nonlinear algebraic
equation to get

f
f (u) = log(u)2

uk+1

Because of the added complexity associated with methods that evaluate at the
next time step , we categorize methods as follows:

f
tk+1

Methods that do not involve the evaluation of at are called explicit. f t = tk+1

Methods that do involve the evaluation of at are called implicit. f t = tk+1
It is more costly to advance the system in time for implicit methods, but we will show

later that there is a benefit in how stable the method is.

Another note: there are many more one-step methods!

9

Instead of interpolating as a constant function, we could have represented it as a
line or a higher order polynomial. These approaches lead to other methods!

f

lecture 11 initial value problems: introduction and one-step methods 4

unknown uk+1 is in the right-hand side of (9); that is, advancing the Methods such as backward Euler that
involve the unknown uk+1 in the right-
hand side are called implicit. Otherwise,
the method is called explicit.

approximate solution with the backward Euler method requires the
solution of a nonlinear algebraic system of equations! Why would we
subject ourselves to that additional complexity? We will find that the
backward Euler method has better stability properties—for time steps
that are too large, the forward Euler method is more prone to provide
exceedingly large estimates to uk+1.

We could alternatively represent f as a line over t 2 [tk, tk+1]. The
result of this is the trapezoid method, which can be expressed as The name ‘trapezoid method’ is not a

coincidence—this is exactly the same
approach that leads to the trapezoid
quadrature rule!Trapezoid method:

uk+1 = uk +
1
2

Dt

⇣
f (uk, tk) + f (uk+1, tk+1)

⌘
(10)

Note that not only does the trapezoid method involve multiple
evaluations of f , but it is also implicit, as it involves the unknown
uk+1 in the right-hand side. Why would we wish to add complexity
to our lives and use the trapezoid method as compared with one
of the Euler methods? We will demonstrate in a subsequent lecture
that the trapezoid method is more accurate than the Euler methods:
for a given Dt, the trapezoid rule will in general provide a better
approximate solution to the IVP (1) than either of the Euler methods.
As with the concept of stability, we will make this notion of accuracy
more precise later.

Methods that involve multiple evaluations of f in the interval
t 2 [tk, tk+1] are called multi-stage methods. To see why, notice that we
can express the trapezoid method, which involves two evaluations of
f , as a two-stage process.

Trapezoid method, take 2:

u⇤
k
= uk +

1
2

Dt f (uk, tk)

uk+1 = u⇤
k
+

1
2

Dt f (uk+1, tk+1)
(11)

Thus, the trapezoid method is a multi-stage method.

Technically, we can view either of the
Euler methods as a one-stage Runge-
Kutta method.

In this text, we will restrict our attention of multi-stage methods
to a special class of methods called Runge-Kutta methods. There is
a preponderance of Runge-Kutta methods in existence that involve
various numbers of stages and a wide range of stability and accuracy
properties. The trapezoid method is a multi-stage method that may
be classified as a Runge-Kutta method. One simple way to arrive at a
different multi-stage Runge-Kutta method is to tweak the trapezoid
method so that it is no longer implicit. We can do this by recognizing
that the f (uk+1, tk+1) term (the implicit term) can be approximated

lecture 11 initial value problems: introduction and one-step methods 5

with a Taylor series as f (uk + Dt f (uk, tk), tk+1). Using this approxima-
tion leads to an explicit multi-stage method called Heun’s method.

Heun’s method (two-stage Runge-Kutta method):

uk+1 = uk +
1
2

Dt


f (uk, tk) + f

⇣
uk + Dt f (uk, tk), tk+1

⌘�
(12)

Other Runge-Kutta methods can be arrived at by interpolating f in
expression (7) using higher-order polynomials that use information
not only at tk and tk+1, but at intermediate time instances as well.
One example of this is the following commonly used four-stage
Runge-Kutta method.

Four-stage Runge-Kutta method (RK4):

uk+1 = uk +
1
6

Dt

⇣
y1 + 2y2 + 2y3 + y4

⌘
(13)

where
y1 = f (uk, tk)

y2 = f
✓

uk +
1
2

Dty1, tk +
1
2

Dt

◆

y3 = f
✓

uk +
1
2

Dty2, tk +
1
2

Dt

◆

y4 = f (uk + Dty3, tk + Dt)

(14)

The details of how this method is
derived involve some subtlety, but
we can remove much of the mystery
by observing that if f were not a
function of u, then we would arrive
at the expression (13) by representing
f (t) as a quadratic function in equally
spaced increments over the interval
t 2 [tk , tk+1].

We have discussed some one-step methods for advancing the IVP
system (1). In the next lecture, we will introduce a different class of
methods for solving IVPs: multi-step methods.

Notice one crucial oversight in our discussion so far: we still have
no mechanism for deciding which method to use for which problem.
This is because we do not yet understand the accuracy properties of
numerical methods for IVPs. We will address this crucial issue next
week, after we have finished introducing one-step and multi-step
methods.

See the typed notes for even more examples!

Trapezoid method

(represent as a line)f

4-stage Runge-Kutta
method

(represent as a higher
degree polynomial)

f

